Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 086801    DOI: 10.1088/1674-1056/ab9438
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Selective linear etching of monolayer black phosphorus using electron beams

Yuhao Pan(潘宇浩)1, Bao Lei(雷宝)2,1, Jingsi Qiao(乔婧思)1, Zhixin Hu(胡智鑫)3, Wu Zhou(周武)2, Wei Ji(季威)1
1 Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials&Micro-Nano Devices, Renmin University of China, Beijing 100872, China;
2 School of Physical Sciences and CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China;
3 Center for Joint Quantum Studies and Department of Physics, Institute of Science, Tianjin University, Tianjin 300350, China
Abstract  

Point and line defects are of vital importance to the physical and chemical properties of certain two-dimensional (2D) materials. Although electron beams have been demonstrated to be capable of creating single-and multi-atom defects in 2D materials, the products are often random and difficult to predict without theoretical inputs. In this study, the thermal motion of atoms and electron incident angle were additionally considered to study the vacancy evolution in a black phosphorus (BP) monolayer by using an improved first-principles molecular dynamics method. The P atoms in monolayer BP tend to be struck away one by one under an electron beam within the displacement threshold energy range of 8.55-8.79 eV, which ultimately induces the formation of a zigzag-like chain vacancy. The chain vacancy is a thermodynamically metastable state and is difficult to obtain by conventional synthesis methods because the vacancy formation energy of 0.79 eV/edge atom is higher than the typical energy in monolayer BP. Covalent-like quasi-bonds and a charge density wave are formed along the chain vacancy, exhibiting rich electronic properties. This work proposes a theoretical protocol for simulating a complete elastic collision process of electron beams with 2D layers and will facilitate the establishment of detailed theoretical guidelines for experiments on 2D material etching using focused high-energy electron beams.

Keywords:  electronic beam radiation simulation      black phosphorus      chain vacancy  
Received:  08 April 2020      Revised:  12 May 2020      Published:  05 August 2020
PACS:  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
  68.37.Ma (Scanning transmission electron microscopy (STEM))  
  68.35.bg (Semiconductors)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11622437, 61674171, 11804247, and 11974422), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000), Key Research Program of Frontier Sciences, Chinese Academy of Sciences (B.L, W.Z.), the Fundamental Research Funds for the Central Universities, China, and the Research Funds of Renmin University of China[Grant Nos. 16XNLQ01 and No. 19XNQ025 (W.J.)].

Corresponding Authors:  Wei Ji     E-mail:  wji@ruc.edu.cn

Cite this article: 

Yuhao Pan(潘宇浩), Bao Lei(雷宝), Jingsi Qiao(乔婧思), Zhixin Hu(胡智鑫), Wu Zhou(周武), Wei Ji(季威) Selective linear etching of monolayer black phosphorus using electron beams 2020 Chin. Phys. B 29 086801

[1] Katsnelson M I 2007 Mater. Today 10 20
[2] Novoselov K S, et al. 2005 Nature 438 197
[3] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[4] Hwang E H and Das Sarma S 2008 Phys. Rev. B 77 115449
[5] Geim A K and Grigorieva I V 2013 Nature 499 419
[6] Wang Z M 2014 MoS2:Materials, Physics, and Devices (Berlin:Springer)
[7] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[8] Fivaz R and Mooser E 1967 Phys. Rev. 163 743
[9] Vogt P, et al. 2012 Phys. Rev. Lett. 108 155501
[10] Houssa M, et al. 2011 Appl. Phys. Lett. 98 223107
[11] Bianco E, et al. 2013 ACS Nano 7 4414
[12] Berger C, et al. 2004 J. Phys. Chem. B 108 19912
[13] Liao L, et al. 2010 Nature 467 305
[14] Schwierz F 2010 Nat. Nanotechnol. 5 487
[15] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[16] Wang H, et al. 2012 Nano Lett. 12 4674
[17] Yoon Y, Ganapathi K and Salahuddin S 2011 Nano Lett. 11 3768
[18] Xia F, Farmer D B, Lin Y M and Avouris P 2010 Nano Lett. 10 715
[19] Popov I, Seifert G and Tománek D 2012 Phys. Rev. Lett. 108 156802
[20] Banhart F, Kotakoski J and Krasheninnikov A V 2011 ACS Nano 5 26
[21] Hong J, et al. 2015 Nat. Commun. 6 6293
[22] Hong J, et al. 2017 Nano Lett. 17 3383
[23] Hong J, et al. 2017 Nano Lett. 17 6653
[24] Zhang C, et al. 2019 ACS Nano 13 1595
[25] Zhang S, et al. 2017 Phys. Rev. Lett. 119 046101
[26] Zhou W, et al. 2013 Nano Lett. 13 2615
[27] Susi T, Meyer J C and Kotakoski J 2017 Ultramicroscopy 180 163
[28] Zhao X, et al. 2017 MRS Bull. 42 667
[29] Ye G, et al. 2016 Nano Lett. 16 1097
[30] Ci L, et al. 2008 Nano Res. 1 116
[31] Kotakoski J, Mangler C and Meyer J C 2014 Nat. Commun. 5 3991
[32] Meyer J C, et al. 2012 Phys. Rev. Lett. 108 196102
[33] Komsa H P and Krasheninnikov A V 2015 Phys. Rev. B 91 125304
[34] Zhao J, et al. 2017 Small 13 1601930
[35] Susi T, et al. 2014 Phys. Rev. Lett. 113 115501
[36] Chuvilin A, Meyer J.C, Algara-Siller G amd Kaiser U. 2009 New J. Phys. 11 083019
[37] Zhang S Y, X X Q, Hua X M, Xie Z L, Liu B, Chen P, Han P, Lu H, Zhang R and Zheng Y D 2014 Chin. Phys. Lett. 31 056802
[38] Deng Y, Wang Y and Li X L 2012 Chin. Phys. Lett. 29 086801
[39] Komsa H P, Kurasch S, Lehtinen O, Kaiser U and Krasheninnikov A V 2013 Phys. Rev. B 88 035301
[40] Qiao J, Kong X, Hu Z X, Yang F and Ji W 2014 Nat. Commun. 5 4475
[41] Hu Z X, Kong X, Qiao J, Normand B and Ji W 2016 Nanoscale 8 2740
[42] Jia Q, Kong X, Qiao J and Ji W 2016 Sci. Chin. Phys. Mech. & Astron. 59 696811
[43] Ren Y 2017 Chin. Phys. Lett. 34 027302
[44] Cheng F 2016 Chin. Phys. Lett. 33 057301
[45] Qiao J, Zhou L and Ji W 2017 Chin. Phys. B 26 036803
[46] Xiao Z, et al. 2017 Nano Res. 10 2519
[47] Vierimaa V, Krasheninnikov A V and Komsa H P 2016 Nanoscale 8 7949
[48] Blöchl P E 1994 Phys. Rev. B 50 17953
[49] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[50] Klimeš J, Bowler D R and Michaelides A 2011 Phys. Rev. B 83 195131
[51] Komsa H P, et al. 2012 Phys. Rev. Lett. 109 035503
[52] McKinley W A and Feshbach H 1948 Phys. Rev. 74 1759
[53] Egerton, R F 2012 Microsc. Res. Technique 75 1550
[54] Dellby N, et al. 2011 Eur. Phys. J.-Appl. Phys. 54 33505
[55] Qiao J, et al. 2018 Sci. Bull. 63 159
[56] Huo L H and Xie G F 2019 Acta Phys. Sin. 68 086501(in Chinese)
[57] Balandin A A, et al. 2008 Nano Lett. 8 902
[58] Grosvenor A P, Biesinger M C, Smart R S C and McIntyre N S 2006 Surf. Sci. 600 1771
[59] Hilgendorff M and Sundström V 1998 J. Phys. Chem. B 102 10505
[60] Willets K A and Van Duyne R P 2007 Annu. Rev. Phys. Chem. 58 267
[61] Kretschmer S, Lehnert T, Kaiser U and Krasheninnikov A V 2020 Nano Lett. 20 2865
[62] Ji W, Lu Z Y and Gao H 2006 Phys. Rev. Lett. 97 246101
[63] Anggara K, Leung L, Timm M J, Hu Z and Polanyi J C 2018 Sci. Adv. 4 eaau2821
[64] Chu W, et al. 2016 J. Am. Chem. Soc. 138 13740
[65] Furche F and Ahlrichs R 2002 J. Chem. Phys. 117 7433
[1] High performance terahertz anisotropic absorption in graphene-black phosphorus heterostructure
Jinming Liang(梁晋铭), Jiangtao Lei(雷江涛), Yun Wang(汪云), Yan Ding(丁燕), Yun Shen(沈云), Xiaohua Deng(邓晓华). Chin. Phys. B, 2020, 29(8): 087805.
[2] Black phosphorus-based field effect transistor devices for Ag ions detection
Hui-De Wang(王慧德), David K Sang, Zhi-Nan Guo(郭志男), Rui Cao(曹睿), Jin-Lai Zhao(赵劲来), Muhammad Najeeb Ullah Shah, Tao-Jian Fan(范涛健), Dian-Yuan Fan(范滇元), Han Zhang(张晗). Chin. Phys. B, 2018, 27(8): 087308.
[3] Intrinsic charge transport behaviors in graphene-black phosphorus van der Waals heterojunction devices
Guo-Cai Wang(王国才), Liang-Mei Wu(吴良妹), Jia-Hao Yan(严佳浩), Zhang Zhou(周璋), Rui-Song Ma(马瑞松), Hai-Fang Yang(杨海方), Jun-Jie Li(李俊杰), Chang-Zhi Gu(顾长志), Li-Hong Bao(鲍丽宏), Shi-Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2018, 27(7): 077303.
[4] Photovoltaic effects in reconfigurable heterostructured black phosphorus transistors
Siqi Hu(胡思奇), Ruijuan Tian(田睿娟), Xiaoguang Luo(罗小光), Rui Yin(殷瑞), Yingchun Cheng(程迎春), Jianlin Zhao(赵建林), Xiaomu Wang(王肖沐), Xuetao Gan(甘雪涛). Chin. Phys. B, 2018, 27(12): 128502.
[5] Tunable edge bands and optical properties in black phosphorus nanoribbons under electric field
Hong Liu(刘红). Chin. Phys. B, 2018, 27(12): 127301.
[6] Electronic, optical property and carrier mobility of graphene, black phosphorus, and molybdenum disulfide based on the first principles
Congcong Wang(王聪聪), Xuesheng Liu(刘学胜), Zhiyong Wang(王智勇), Ming Zhao(赵明), Huan He(何欢), Jiyue Zou(邹吉跃). Chin. Phys. B, 2018, 27(11): 118106.
[7] Geometric stability and electronic structure of infinite and finite phosphorus atomic chains
Jingsi Qiao(乔婧思), Linwei Zhou(周霖蔚), Wei Ji(季威). Chin. Phys. B, 2017, 26(3): 036803.
[8] Toward high-performance two-dimensional black phosphorus electronic and optoelectronic devices
Xuefei Li(李学飞), Xiong Xiong(熊雄), Yanqing Wu(吴燕庆). Chin. Phys. B, 2017, 26(3): 037307.
[9] Two-dimensional materials for ultrafast lasers
Fengqiu Wang(王枫秋). Chin. Phys. B, 2017, 26(3): 034202.
[10] Bending-induced phase transition in monolayer black phosphorus
Pan Dou-Xing, Wang Tzu-Chiang, Guo Wan-Lin. Chin. Phys. B, 2015, 24(8): 086401.
No Suggested Reading articles found!