Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 065204    DOI: 10.1088/1674-1056/ab84da

Tests of the real-time vertical growth rate calculation on EAST

Na-Na Bao(鲍娜娜)1,2, Yao Huang(黄耀)1, Jayson Barr3, Zheng-Ping Luo(罗正平)1, Yue-Hang Wang(汪悦航)1, Shu-Liang Chen(陈树亮)1, Bing-Jia Xiao(肖炳甲)1,2, David Humphreys3
1 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China;
2 University of Science & Technology of China, Hefei 230026, China;
3 General Atomics, P. O. Box 85608, San Diego, CA 92186-5608, USA
Abstract  In order to measure controllability of vertical instability in EAST, the calculation of model-based vertical growth rate, called rt-gamma, has been successfully carried out in real time. The numerical computing method is adapted from rigid plasma response model in TokSys, which is a widely-used analysis tool for tokamak devices in Matlab environment, but the code is rewritten by taking advantage of GPU parallel computing capability to accelerate the computation. The calculation of rt-gamma is validated by comparing it with the corresponding result generated by TokSys for totally 3508 cases. It is shown that the average absolute value of relative errors is about 0.85%. In addition, the calculation program of rt-gamma has been successfully applied during 2019 EAST campaign. The comparison with experimental results is discussed in this paper. The real-time calculation tool is well able to calculate model-based vertical growth rate, which is convenient for fast and continuous evaluations of EAST control system stability performances.
Keywords:  EAST      vertical growth rate      rigid plasma response model  
Received:  17 February 2020      Revised:  25 March 2020      Published:  05 June 2020
PACS:  52.55.Fa (Tokamaks, spherical tokamaks)  
  07.05.Dz (Control systems)  
  12.20.Fv (Experimental tests)  
Fund: Project supported by the National MCF Energy Research and Development Program of China (Grant No. 2018YFE0302100) and the National Natural Science Foundation of China (Grant Nos. 11705239, 11805236, and 11875291).
Corresponding Authors:  Yao Huang     E-mail:

Cite this article: 

Na-Na Bao(鲍娜娜), Yao Huang(黄耀), Jayson Barr, Zheng-Ping Luo(罗正平), Yue-Hang Wang(汪悦航), Shu-Liang Chen(陈树亮), Bing-Jia Xiao(肖炳甲), David Humphreys Tests of the real-time vertical growth rate calculation on EAST 2020 Chin. Phys. B 29 065204

[1] Hender T C, Wesley J C, Bialek J, et al. 2007 Nucl. Fusion 47 S128
[2] Hassanein A, Sizyuk T and Ulrickson M 2008 Fusion Eng. 83 1020
[3] Wan B N and International Collaborators 2009 Nucl. Fusion 49 104011
[4] Li J, Guo H Y, Wan B N, Gong X Z, Liang Y F, Xu G S, Gan K F, Hu J S, Wang H Q, Wang L, Zeng L, Zhao Y P, Denner P, Jackson G L, Loarte A, Maingi R, Menard J E, Rack M and Zou X L 2013 Nat. Phys. 9 817
[5] Liu L, Xiao B J, Humphreys D A, Luo Z P and Chen S L 2014 Fusion Eng. 89 563
[6] Albanese R, Ambrosino R, Castaldo A, De G, Luo Z P, Mele A, Pironti A, Xiao B J and Yuan Q P 2017 Nucl. Fusion 57 086039
[7] Lazarus E A, Lister J B and Neilson G H 1990 Nucl. Fusion 30 111
[8] Yuan Q P, Xiao B J, Luo Z P, Walker M L, Welander A S, Hyatt A W, Qian J P, Zhang R R, Humphreys D A, Leuer J A, Johnson R D, Penaflor B G and Mueller D 2013 Nucl. Fusion 53 043009
[9] Humphreys D A, Ferron J R, Bakhtiari M, Blair J A, In Y, Jackson G L, Jhang H, Johnson R D, Kim J S, LaHaye R J, Leuer J A, Penaflor B G, Schuster E, Walker M L, Wang H, Welander A S and Whyte D G 2007 Nucl. Fusion 47 943
[10] Qian J P, Wan B N, Shen B, Xiao B J, Sun Y W, Shi Y J, Lin S Y, Li J G and Gong X Z 2008 Plasma Sci. Technol. 10 290
[11] Qian J P, Wan B N, Shen B, Walker M L, Humpreys D A and Xiao B J 2009 Chin. Phys. B 18 024302
[12] Qiu Q L, Xiao B J, Guo Y, Liu L, Xing Z and Humpreys D A 2016 Nucl. Fusion 56 106029
[13] Bao N N, Huang Y, Xiao B J, Yuan Q P, Zhuang H D, Luo Z P, Wang Y H and Zhang R R 2020 IEEE Trans. Plasma Sci. 48 715
[14] Huang Y, Xiao B J and Luo Z P 2017 Chin. Phys. B 26 085204
[15] Chen S L, Villone F, Xiao B J, Barbato L, Mastrostefano S, Luo Z P, Guo Y and Liu L 2016 Plasma Phys. Control. Fusion 58 025017
[16] Yuan Q P, Xiao B J, Penaflor B G, Piglowski D A, Liu L Z, Johnson R D, Walker M L and Humphreys D A 2010 Fusion Eng. 85 474
[17] Xiao B J, Yuan Q P, Luo Z P, Huang Y, Liu L, Guo Y, Pei X F, Chen S L, Humphreys D A, Hyatt A W, Mueller D, Calabró G, Crisanti F, Albanese A and Ambrosino R 2016 Fusion Eng. 112 660
[18] Lao L L, St H E, Peng Q, Ferron J R, Strait E J, Taylor T S, Meyer W H, Zhang C and You K I 2005 Fusion Sci. Technol. 48 968
[19] Walker M L, Ferron J R, Humphreys D A, Johnson R D, Leuer J A, Penaflor B G, Piglowski D A, Ariola M, Pironti A and Schuster E 2003 Fusion Eng. 66-68 749
[20] Humphreys D A, Ferron J R, Hyatt A W, La Haye R J, Leuer J A, Penaflor B G, Walker M L, Welander A S and In Y 2008 Fusion Eng. 83 193
[1] A meshless algorithm with the improved moving least square approximation for nonlinear improved Boussinesq equation
Yu Tan(谭渝) and Xiao-Lin Li(李小林). Chin. Phys. B, 2021, 30(1): 010201.
[2] Measurement of molybdenum ion density for L-mode and H-mode plasma discharges in the EAST tokamak
Yongcai Shen(沈永才), Hongming Zhang(张洪明), Bo Lyu(吕波), Yingying Li(李颖颖), Jia Fu(符佳), Fudi Wang(王福地), Qing Zang(臧庆), Baonian Wan(万宝年), Pan Pan(潘盼), Minyou Ye(叶民友). Chin. Phys. B, 2020, 29(6): 065206.
[3] Plasma shape optimization for EAST tokamak using orthogonal method
Yuan-Yang Chen(陈远洋), Xiao-Hua Bao(鲍晓华), Peng Fu(傅鹏), Ge Gao(高格). Chin. Phys. B, 2019, 28(1): 015201.
[4] Novel quantum watermarking algorithm based on improved least significant qubit modification for quantum audio
Zhi-Guo Qu(瞿治国), Huang-Xing He(何煌兴), Tao Li(李涛). Chin. Phys. B, 2018, 27(1): 010306.
[5] Radiative divertor behavior and physics in Ar seeded plasma on EAST
Jingbo Chen(陈竞博), Yanmin Duan(段艳敏), Zhongshi Yang(杨钟时), Liang Wang(王亮), Kai Wu(吴凯), Kedong Li(李克栋), Fang Ding(丁芳), Hongmin Mao(毛红敏), Jichan Xu(许吉禅), Wei Gao(高伟), Ling Zhang(张凌), Jinhua Wu(吴金华), Guang-Nan Luo(罗广南), EAST Team. Chin. Phys. B, 2017, 26(9): 095205.
[6] Topology optimization using the improved element-free Galerkin method for elasticity
Yi Wu(吴意), Yong-Qi Ma(马永其), Wei Feng(冯伟), Yu-Min Cheng(程玉民). Chin. Phys. B, 2017, 26(8): 080203.
[7] Meshless analysis of an improved element-free Galerkin method for linear and nonlinear elliptic problems
Yao-Zong Tang(唐耀宗), Xiao-Lin Li(李小林). Chin. Phys. B, 2017, 26(3): 030203.
[8] Solving unsteady Schrödinger equation using the improved element-free Galerkin method
Rong-Jun Cheng(程荣军) and Yu-Min Cheng(程玉民). Chin. Phys. B, 2016, 25(2): 020203.
[9] A divertor plasma configuration design method for tokamaks
Yong Guo(郭勇), Bing-Jia Xiao(肖炳甲), Lei Liu(刘磊), Fei Yang(杨飞), Yuehang Wang(汪悦航), Qinglai Qiu (仇庆来). Chin. Phys. B, 2016, 25(11): 115201.
[10] Quantitative analysis of ammonium salts in coking industrial liquid waste treatment process based on Raman spectroscopy
Ya-Nan Cao(曹亚南), Gui-Shi Wang(王贵师), Tu Tan(谈图), Ting-Dong Cai(蔡廷栋), Kun Liu(刘锟), Lei Wang(汪磊), Gong-Dong Zhu(朱公栋), Jiao-Xu Mei(梅教旭). Chin. Phys. B, 2016, 25(10): 107403.
[11] Optimized calculation of the synergy conditions between electron cyclotron current drive and lower hybrid current drive on EAST
Wei Wei(韦维), Bo-Jiang Ding(丁伯江), Y Peysson, J Decker, Miao-Hui Li(李妙辉),Xin-Jun Zhang(张新军), Xiao-Jie Wang(王晓洁), Lei Zhang(张磊). Chin. Phys. B, 2016, 25(1): 015201.
[12] Data point selection for weighted least square fitting of cavity decay time constant
Xing He(何星), Hu Yan(晏虎), Li-Zhi Dong(董理治), Ping Yang(杨平), Bing Xu(许冰). Chin. Phys. B, 2016, 25(1): 014211.
[13] Objective identification research on cold vortex and mid-summer rainy periods in Northeast China
Gong Zhi-Qiang, Feng Tai-Chen, Fang Yi-He. Chin. Phys. B, 2015, 24(4): 049204.
[14] Characterization of plasma current quench during disruption in EAST tokamak
Chen Da-Long, Granetz Robert, Shen Biao, Yang Fei, Qian Jin-Ping, Xiao Bing-Jia. Chin. Phys. B, 2015, 24(2): 025205.
[15] Analysis of elastoplasticity problems using an improved complex variable element-free Galerkin method
Cheng Yu-Min, Liu Chao, Bai Fu-Nong, Peng Miao-Juan. Chin. Phys. B, 2015, 24(10): 100202.
No Suggested Reading articles found!