Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 044702    DOI: 10.1088/1674-1056/23/4/044702
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Boundary layer flow and heat transfer of a Casson fluid past a symmetric porous wedge with surface heat flux

Swati Mukhopadhyay, Iswar Chandra Mandal
Department of Mathematics, The University of Burdwan, Burdwan-713104, W. B., India
Abstract  The aim of this paper is to investigate numerically the boundary layer forced convection flow of a Casson fluid past a symmetric porous wedge. Similarity transformations are used to convert the governing partial differential equations into ordinary ones. With the help of the shooting method, the reduced equations are then solved numerically. Comparisons are made with the previously published results in some special cases and they are found to be in excellent agreement with each other. The results obtained in this study are illustrated graphically and discussed in detail. The velocity is found to increase with an increasing Falkner-Skan exponent whereas the temperature decreases. With the rise of the Casson fluid parameter, the fluid velocity increases but the temperature is found to decrease in this case. Fluid velocity is suppressed with the increase of suction. The skin friction decreases with the increasing value of Casson fluid parameter. It is found that the temperature decreases as the Prandtl number increases and thermal boundary layer thickness decreases with the increasing value of Prandtl number. A significant finding of this investigation is that flow separation can be controlled by increasing the value of the Casson fluid parameter as well as by increasing the amount of suction.
Keywords:  symmetric wedge      Casson fluid      heat flux      suction/blowing  
Received:  23 May 2013      Revised:  14 July 2013      Accepted manuscript online: 
PACS:  47.15.Cb (Laminar boundary layers)  
  47.50.-d (Non-Newtonian fluid flows)  
  44.20.+b (Boundary layer heat flow)  
Corresponding Authors:  Swati Mukhopadhyay, Iswar Chandra Mandal     E-mail:  swati_bumath@yahoo.co.in;iswar.chandra2010@gmail.com
About author:  47.15.Cb; 47.50.-d; 44.20.+b

Cite this article: 

Swati Mukhopadhyay, Iswar Chandra Mandal Boundary layer flow and heat transfer of a Casson fluid past a symmetric porous wedge with surface heat flux 2014 Chin. Phys. B 23 044702

[1] Mukhopadhyay S 2012 Z. Naturforsch 67a 641DOI: 10.5560/ZNA.2012-0075
[2] Mukhopadhyay S and Vajravelu K 2012 ASME J. Appl. Mech. 79 044508-1
[3] Mukhopadhyay S 2012 Chin. Phys. Lett. 29 054703
[4] Mukhopadhyay S and Bhattacharyya K 2012 J. Egyptian Math. Soc. 20 229
[5] Patel V and Timol M G 2012 Int. J. Appl. Math. Mech. 8 77
[6] Eldabe N T M and Salwa M G E 1995 J. Phys. Soc. Jpn. 64 41
[7] Dash R K, Mehta K N and Jayaraman G 1996 Int. J. Engng. Sci. 34 1145
[8] Falkner V M and Skan S W 1931 SIAM J. Appl. Math. 49 1350
[9] Hartree D R 1937 Proc. Cambridge Phil. Soc. 33 223
[10] Hady F M and Hassanien I A 1985 Astrophys. Space Sci. 112 381
[11] Lin H T and Lin L K 1987 Int. J. Heat Mass Transfer 30 1111
[12] Watanabe T and Pop I 1993 Int. Commun. Heat Mass Transfer 20 871
[13] Kafoussias N G and Nanousis N D 1997 Can. J. Phys. 75 733
[14] Yih K A 1996 Int. Commun. Heat Mass Transfer 26 819
[15] Hossain M A, Munir M S and Rees D A S 2000 Int. J. Thermal Sci. 39 635
[16] Chamkha A J, Quadri M M and Camille I 2003 Heat Mass Transfer 39 305
[17] Pantokratoras A 2006 Int. J. Thermal Sci. 45 378
[18] Mukhopadhyay S 2009 J. Appl. Fluid Mech. 2 29
[19] Pal D and Mondal H 2009 Appl. Math. Comput. 212 194
[20] Kandasamy R, Periasamy K and Sivagnana Prabhu K K 2005 Int. J. Heat Mass Transfer 48 1388
[21] Hossain M A, Bhowmik S and Gorla R S R 2006 Int. J. Engng. Sci. 44 607
[22] Kim Y J 1999 Acta Mech. 138 113
[23] Kim Y J and Kim T A 2003 Int. J. Appl. Mech. Engng. 8 147 Special issue: ICER 2003
[24] Ishak A, Nazar R and Pop I 2009 Commun. Nonlinear Sci. Numer. Simul. 14 109
[25] Riley N and Weidman P D 1989 J. Appl. Math. Comput. 25 67
[26] Ishak A, Nazar R and Pop I 2006 Int. J. Engng. Sci. 44 1225
[27] Ishak A, Nazar R and Pop I 2007 J. Appl. Math. Comput. 25 67
[28] Kandasamy R, Muhaimin, Hashim I and Ruhaila 2008 Nuclear Engng. Design 238 2699
[29] Yacob N A, Ishak A and Pop I 2011 Int. J. Thermal Sci. 50 133
[30] De P R, Mukhopadhyay S and Layek G C 2012 Acta Technica 57 227
[31] Mukhopadhyay S, Mondal I C and Chamkha A J 2013 Heat Transfer – Asian Research 48 665
[32] Bhattacharyya K, Hayat T and Alsaedi A 2013 Chin. Phys. B 22 024702
[33] Mukhopadhyay S 2013 Chin. Phys. B 22 074701
[34] Ishak A, Pop I and Nazar R 2009 Chin. Phys. Lett. 26 014702
[35] Mondal I C and Mukhopadhyay S 2012 Ain Shams Engng. J. doi:10.1016/j.asej.2012.06.004
[36] Cebeci T and Bradshaw P 1984 Physical and Computational Aspect of Covective Heat Transfer (New York: Springer-Verlag)
[1] Accurate prediction of the critical heat flux for pool boiling on the heater substrate
Fengxun Hai(海丰勋), Wei Zhu(祝薇), Xiaoyi Yang(杨晓奕), and Yuan Deng(邓元). Chin. Phys. B, 2022, 31(6): 064401.
[2] Erratum to “Boundary layer flow and heat transfer of a Casson fluid past a symmetric porous wedge with surface heat flux”
Swati Mukhopadhyay and Iswar Chandra Mandal. Chin. Phys. B, 2022, 31(5): 059902.
[3] Calculation of radiative heat flux on irregular boundaries in participating media
Yu-Jia Sun(孙玉佳) and Shu Zheng(郑树). Chin. Phys. B, 2020, 29(12): 124401.
[4] An efficient inverse approach for reconstructing time- and space-dependent heat flux of participating medium
Shuang-Cheng Sun(孙双成), Guang-Jun Wang(王广军), and Hong Chen(陈红)$. Chin. Phys. B, 2020, 29(11): 110202.
[5] Macro-performance of multilayered thermoelectric medium
Kun Song(宋坤), Hao-Peng Song(宋豪鹏), Cun-Fa Gao(高存法). Chin. Phys. B, 2017, 26(12): 127307.
[6] Analytical study of Cattaneo-Christov heat flux model for a boundary layer flow of Oldroyd-B fluid
F M Abbasi, M Mustafa, S A Shehzad, M S Alhuthali, T Hayat. Chin. Phys. B, 2016, 25(1): 014701.
[7] MHD boundary layer flow of Casson fluid passing through an exponentially stretching permeable surface with thermal radiation
Swati Mukhopadhyay, Iswar Ch, ra Moindal, Tasawar Hayat. Chin. Phys. B, 2014, 23(10): 104701.
[8] Variable fluid properties and variable heat flux effects on the flow and heat transfer in a non-Newtonian Maxwell fluid over an unsteady stretching sheet with slip velocity
Ahmed M. Megahed. Chin. Phys. B, 2013, 22(9): 094701.
[9] Heat transfer in boundary layer stagnation-point flow towards a shrinking sheet with non-uniform heat flux
Krishnendu Bhattacharyya. Chin. Phys. B, 2013, 22(7): 074705.
[10] Casson fluid flow and heat transfer over a nonlinearly stretching surface
Swati Mukhopadhyay. Chin. Phys. B, 2013, 22(7): 074701.
[11] Analytic solution for magnetohydrodynamic boundary layer flow of Casson fluid over a stretching/shrinking sheet with wall mass transfer
Krishnendu Bhattacharyya, Tasawar Hayat, Ahmed Alsaedi. Chin. Phys. B, 2013, 22(2): 024702.
[12] Exact solutions for the flow of Casson fluid over a stretching surface with transpiration and heat transfer effects
Swati Mukhopadhyay, Krishnendu Bhattacharyya, Tasawar Hayat. Chin. Phys. B, 2013, 22(11): 114701.
[13] Effects of thermal radiation on Casson fluid flow and heat transfer over an unsteady stretching surface subjected to suction/blowing
Swati Mukhopadhyay. Chin. Phys. B, 2013, 22(11): 114702.
[14] Reconstruction of heat flux profile on the HL-2A divertor plate with a three-dimensional analysis model
Gao Jin-Ming (高金明), Li Wei (李伟), Xia Zhi-Wei (夏志伟), Pan Yu-Dong (潘宇东), Lu Jie (卢杰), Yi Ping (易萍), Liu Yi (刘仪). Chin. Phys. B, 2013, 22(1): 015202.
No Suggested Reading articles found!