Please wait a minute...
Chin. Phys., 2007, Vol. 16(12): 3581-3588    DOI: 10.1088/1009-1963/16/12/005
GENERAL Prev   Next  

New algorithms for constrained dynamics based on Faddeev--Jackiw approach

Xu Zhi-Qianga, Jia Yi-Fengb, Wu Keb
a Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080, China; b School of Mathematical Sciences, Capital Normal University, Beijing 100037, China
Abstract  In this paper, the Faddeev--Jackiw approach is improved by the Wu elimination method, so a great many complicated computations in solving constraints for the finite-dimensional polynomial-type constrained dynamics can be executed easily by using computers. Moreover, based on the Faddeev--Jackiw approach, a new algorithm of solving the constrained dynamics is presented. The new algorithm is simpler and stricter than the Faddeev--Jackiw approach. Using the new algorithm, the second Cawley counterexample is solved.
Keywords:  symplectic matrix      constrained      characteristic chain  
Published:  20 December 2007
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 10401021).

Cite this article: 

Xu Zhi-Qiang, Jia Yi-Feng, Wu Ke New algorithms for constrained dynamics based on Faddeev--Jackiw approach 2007 Chin. Phys. 16 3581

[1] Stability analysis of a simple rheonomic nonholonomic constrained system
Chang Liu(刘畅), Shi-Xing Liu(刘世兴), Feng-Xing Mei(梅凤翔). Chin. Phys. B, 2016, 25(12): 124501.
[2] Acoustic radiation from the submerged circular cylindrical shell treated with active constrained layer damping
Yuan Li-Yun, Xiang Yu, Lu Jing, Jiang Hong-Hua. Chin. Phys. B, 2015, 24(12): 124301.
[3] Neural adaptive chaotic control with constrained input using state and output feedback
Gao Shi-Gen, Dong Hai-Rong, Sun Xu-Bin, Ning Bin. Chin. Phys. B, 2015, 24(1): 010501.
[4] A double constrained robust capon beamforming based imaging method for early breast cancer detection
Xiao Xia, Xu Li, Li Qin-Wei. Chin. Phys. B, 2013, 22(9): 094101.
[5] Fractional charges and fractional spins for composite fermions in quantum electrodynamics
Wang Yong-Long, Lu Wei-Tao, Jiang Hua, Xu Chang-Tan, Pan Hong-Zhe. Chin. Phys. B, 2012, 21(7): 070501.
[6] Mei symmetry and Mei conserved quantity of the Appell equation in a dynamical system of relative motion with non-Chetaev nonholonomic constraints
Wang Xiao-Xiao,Sun Xian-Ting,Zhang Mei-Ling,Han Yue-Lin,Jia Li-Qun. Chin. Phys. B, 2012, 21(5): 050201.
[7] The forward and inverse problem of cardiac magnetic fields based on concentric ellipsoid torso-heart model
Wang Qian, Hua Ning, Tang Xue-Zheng, Lu Hong, Ma Ping, Tang Fa-Kuan. Chin. Phys. B, 2010, 19(8): 080601.
[8] Mei symmetry and Mei conserved quantity of nonholonomic systems with unilateral Chetaev type in Nielsen style
Jia Li-Qun, Xie Jia-Fang, Luo Shao-Kai. Chin. Phys. B, 2008, 17(5): 1560-1564.
[9] The CP1 nonlinear sigma model with Chern--Simons term in the Faddeev--Jachiw quantization formalism
Wang Yong-Long, Li Zi-Ping. Chin. Phys. B, 2006, 15(9): 1976-1980.
[10] Integrating factors and conservation theorems of constrained Birkhoffian systems
Qiao Yong-Fen, Zhao Shu-Hong, Li Ren-Jie. Chin. Phys. B, 2006, 15(12): 2777-2781.
[11] Extraction of optical constants and thickness of nanometre scale TiO2 film
Yang Ying-Ge, Liu Pi-Jun, Wang Ying, Zhang Ya-Fei. Chin. Phys. B, 2005, 14(11): 2335-2337.
[12] The symmetries in the Maxwell-Chern-Simons theory coupled to matter fields
Jiang Jin-Huan, Liu Yun, Li Zi-Ping. Chin. Phys. B, 2004, 13(2): 153-158.
[13] Lie symmetries and invariants of constrained Hamiltonian systems
Liu Rong-Wan, Chen Li-Qun. Chin. Phys. B, 2004, 13(10): 1615-1619.
[14] An integrable Hamiltonian hierarchy, a high-dimensional loop algebra and associated integrable coupling system
Zhang Yu-Feng. Chin. Phys. B, 2003, 12(11): 1194-1201.
[15] Construction of the solution of variational equations for constrained Birkhoffian systems
Zhang Yi. Chin. Phys. B, 2002, 11(5): 437-440.
No Suggested Reading articles found!