Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 120516    DOI: 10.1088/1674-1056/ac16cc
Special Issue: SPECIAL TOPIC— Interdisciplinary physics: Complex network dynamics and emerging technologies
SPECIAL TOPIC—Interdisciplinary physics: Complex network dynamics and emerging technologies Prev   Next  

Modeling and dynamics of double Hindmarsh-Rose neuron with memristor-based magnetic coupling and time delay

Guoyuan Qi(齐国元) and Zimou Wang(王子谋)
Tianjin Key Laboratory of Intelligent Control of Electrical Equimpment, Tiangong University, Tianjin 300387, China
Abstract  The firing of a neuron model is mainly affected by the following factors:the magnetic field, external forcing current, time delay, etc. In this paper, a new time-delayed electromagnetic field coupled dual Hindmarsh-Rose neuron network model is constructed. A magnetically controlled threshold memristor is improved to represent the self-connected and the coupled magnetic fields triggered by the dynamic change of neuronal membrane potential for the adjacent neurons. Numerical simulation confirms that the coupled magnetic field can activate resting neurons to generate rich firing patterns, such as spiking firings, bursting firings, and chaotic firings, and enable neurons to generate larger firing amplitudes. The study also found that the strength of magnetic coupling in the neural network also affects the number of peaks in the discharge of bursting firing. Based on the existing medical treatment background of mental illness, the effects of time lag in the coupling process against neuron firing are studied. The results confirm that the neurons can respond well to external stimuli and coupled magnetic field with appropriate time delay, and keep periodic firing under a wide range of external forcing current.
Keywords:  bi-Hindmarsh and Rose (HR) neuron model      memristor      magnetic coupling      time delay  
Received:  29 April 2021      Revised:  18 July 2021      Accepted manuscript online:  22 July 2021
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  87.15.-v (Biomolecules: structure and physical properties)  
  87.15.A- (Theory, modeling, and computer simulation)  
  84.35.+i (Neural networks)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61873186).
Corresponding Authors:  Guoyuan Qi     E-mail:  guoyuanqisa@qq.com

Cite this article: 

Guoyuan Qi(齐国元) and Zimou Wang(王子谋) Modeling and dynamics of double Hindmarsh-Rose neuron with memristor-based magnetic coupling and time delay 2021 Chin. Phys. B 30 120516

[1] Bertram R, Butte M J, Kiemel T and Sherman A 1995 B. Math. Biol. 57 413
[2] Ma J and Tang J 2017 Nonlinear Dyn. 89 1569
[3] Xu Y, Ma J, Zhan X, Yang L and Jia Y 2019 Cogn. Neurodyn. 13 601
[4] Bao B, Yang Q and Zhu D 2020 Nonlinear Dyn. 99 2339
[5] Corinto F, Ascoli A and Lanza V 2011 The 2011 International Joint Conference on Neural Networks 2402
[6] Ren G, Xu Y and Wang C 2017 Nonlinear Dyn. 88 893
[7] Yu H J and Tong W J 2009 Acta Phys. Sin. 58 2977 (in Chinese)
[8] Yu Y, Hao Y and Wang Q 2020 Neural networks 122 308
[9] Jeyasothy A, Sundaram S and Sundararajan N 2018 IEEE Trans. Neural. Netw. Learn Syst. 30 1231
[10] Xu Y, Liu M H. Zhu Z G and Ma J 2020 Chin. Phys. B 29 098704
[11] Hodgkin A L and Huxley A F 1952 The Journal of Physiology 117 500
[12] Fitzhugh R 1961 Biophys. J. 1 445
[13] Hindmarsh J L and Rose R M 1982 Nature 296 162
[14] Hindmarsh J L and Rose R M 1982 Nature 299 375
[15] Hindmarsh J L and Rose R M 1984 Proceedings of the Royal Society B:Biological Sciences 221 87
[16] Chua L 1971 IEEE Trans. Circuits Syst. 18 507
[17] Bao B, Qian H, Xu Q, Chen M, Wang J and Yu Y 2017 Frontiers Comput. Neurosci. 11 81
[18] Lin H and Wang C 2020 Appl. Math. Comput. 369 124840
[19] Wu F, Ma J and Zhang G 2019 Appl. Math. Comput. 347 590
[20] Ma J, Wu F Q and Wang C N 2017 Mod. Phys. B 31 1650251
[21] Wu J, Xu Y and Ma J 2017 Plos One 12 1
[22] Lv M and Ma J 2016 Neurocomputing 205 375
[23] Bao H, Hu A, Liu W and Bao B C 2019 IEEE Trans. Neural. Netw. Learn Syst. 117 500
[24] Lin H and Wang C H 2020 Nonlinear Dyn. 99 2369
[25] Lin H, Wang C H, Sun Y C and Wei Yao 2020 Nonlinear Dyn. 100 3667
[26] Ren G D, Wu G and Ma J 2015 Acta Phys. Sin. 64 058702 (in Chinese)
[27] Lv M, Wang C and Ren G 2016 Nonlinear Dyn. 85 1479
[28] Eshraghian K, Kavehei O and Cho K R 2012 Proc. IEEE 100 1991
[29] Ostojic S, Brunel N and Hakim V 2009 J. Neurosci. 29 10234
[30] Mannan Z I, Adhikari S P, Yang C, Budhathoki R K, Kim H and Chua L 2019 IEEE Trans. Neural. Netw. Learn Syst. 30 3458
[31] Tan Y M and Wang C H 2020 Chaos 30 053118
[32] Ma J, Lv M and Zhou P 2017 P. Math. Comput. 307 321
[33] Ma J, Wu F Q and Wang C N 2016 Mod. Phys. B. 31 1650251
[34] Parastesh F, Rajagopal K and Karthikeyan A 2018 Cogn. Neurodynamics. 12 607
[35] Usha K and Subha P A 2019 Chin. Phys. B 28 020502
[36] Xu Y, Jia Y, Ma J, Alsaedi A and Ahmad B 2017 Chaos, Solitons, and Fractals 104 435
[37] Xu F, Zhang J, Fang T, Huang S and Wang M 2018 Nonlinear Dyn. 92 1395
[38] Bao H, Liu W and Hu A 2019 Nonlinear Dyn. 95 43
[39] Qin H X, Ma J and Jin W 2014 Sci. Chin. Technol. Sci. 57 936
[40] Han F, Wang Z J, Fan H and Gong T 2015 Chin. Phys. Lett. 32 040502
[41] Lakshmanan S, Lim C P, Nahavandi S, Prakash M and Balasubramaniam P 2016 IEEE Trans. Neural. Netw. Learn Syst. 28 1953
[42] Steur E, Murguia C and Fey R H B 2016 Int. J. Bifurcat. Chaos 26 1
[43] Huang S F, Zhang J Q, Wang M S and Hu C K 2018 Physica A 499 88
[44] Fan D and Wang Q 2018 Phys. Rev. E 98 052414
[45] Fan D, Zhang L and Wang Q 2018 Nonlinear Dyn. 94 2807
[46] Izhikevich E M 2000 Bifurc. Chaos 10 1171
[47] Yang M, Liu Z, Li L, Xu Y, Liu H, Gu H and Ren W 2009 Bifurc. Chaos 19 453
[48] Skokos Ch 2010 Lect. Notes Phys. 790 63
[49] Schrader L M, Stem J M and Koski L 2004 Clin. Neurophysiol. 115 2728
[50] Ardolino G, Bossi B, Barbieri S and Priori A 2005 J. Physiol. 568 653
[51] Theodore W H 2003 Epilepsy Curr. 3 191
[1] Inferring interactions of time-delayed dynamic networks by random state variable resetting
Changbao Deng(邓长宝), Weinuo Jiang(蒋未诺), and Shihong Wang(王世红). Chin. Phys. B, 2022, 31(3): 030502.
[2] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[3] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[4] Artificial synaptic behavior of the SBT-memristor
Gang Dou(窦刚), Ming-Long Dou(窦明龙), Ren-Yuan Liu(刘任远), and Mei Guo(郭梅). Chin. Phys. B, 2021, 30(7): 078401.
[5] Suppression of ferroresonance using passive memristor emulator
S Poornima. Chin. Phys. B, 2021, 30(6): 068401.
[6] SBT-memristor-based crossbar memory circuit
Mei Guo(郭梅), Ren-Yuan Liu(刘任远), Ming-Long Dou(窦明龙), and Gang Dou(窦刚). Chin. Phys. B, 2021, 30(6): 068402.
[7] Delayed excitatory self-feedback-induced negative responses of complex neuronal bursting patterns
Ben Cao(曹奔), Huaguang Gu(古华光), and Yuye Li(李玉叶). Chin. Phys. B, 2021, 30(5): 050502.
[8] Digital and analog memory devices based on 2D layered MPS3 ( M=Mn, Co, Ni) materials
Guihua Zhao(赵贵华), Li Wang(王力), Xi Ke(柯曦), and Zhiyi Yu(虞志益). Chin. Phys. B, 2021, 30(4): 047303.
[9] Spin correlations in the S=1 armchair chain Ni2NbBO6 as seen from NMR
Kai-Yue Zeng(曾凯悦), Long Ma(马龙), Long-Meng Xu(徐龙猛), Zhao-Ming Tian(田召明), Lang-Sheng Ling(凌浪生), and Li Pi(皮雳). Chin. Phys. B, 2021, 30(4): 047503.
[10] Implementation of synaptic learning rules by TaOx memristors embedded with silver nanoparticles
Yue Ning(宁玥), Yunfeng Lai(赖云锋), Jiandong Wan(万建栋), Shuying Cheng(程树英), Qiao Zheng(郑巧), and Jinling Yu(俞金玲). Chin. Phys. B, 2021, 30(4): 047301.
[11] Stabilization strategy of a car-following model with multiple time delays of the drivers
Weilin Ren(任卫林), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2021, 30(12): 120506.
[12] A review on the design of ternary logic circuits
Xiao-Yuan Wang(王晓媛), Chuan-Tao Dong(董传涛), Zhi-Ru Wu(吴志茹), and Zhi-Qun Cheng(程知群). Chin. Phys. B, 2021, 30(12): 128402.
[13] Continuous non-autonomous memristive Rulkov model with extreme multistability
Quan Xu(徐权), Tong Liu(刘通), Cheng-Tao Feng(冯成涛), Han Bao(包涵), Hua-Gan Wu(武花干), and Bo-Cheng Bao(包伯成). Chin. Phys. B, 2021, 30(12): 128702.
[14] Cascade discrete memristive maps for enhancing chaos
Fang Yuan(袁方), Cheng-Jun Bai(柏承君), and Yu-Xia Li(李玉霞). Chin. Phys. B, 2021, 30(12): 120514.
[15] Transient transition behaviors of fractional-order simplest chaotic circuit with bi-stable locally-active memristor and its ARM-based implementation
Zong-Li Yang(杨宗立), Dong Liang(梁栋), Da-Wei Ding(丁大为), Yong-Bing Hu(胡永兵), and Hao Li(李浩). Chin. Phys. B, 2021, 30(12): 120515.
No Suggested Reading articles found!