Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 026701    DOI: 10.1088/1674-1056/abd760
Special Issue: SPECIAL TOPIC --- Quantum computation and quantum simulation SPECIAL TOPIC --- Quantum computation and quantum simulation
SPECIAL TOPIC — Quantum computation and quantum simulation Prev   Next  

Cluster mean-field study of spinor Bose-Hubbard ladder: Ground-state phase diagram and many-body population dynamics

Li Zhang(张莉)1,2, Wenjie Liu(柳文洁)1,2, Jiahao Huang(黄嘉豪)1,2,†, and Chaohong Lee(李朝红)1,2,
1 Guangdong Provincial Key Laboratory of Quantum Metrology and Sensing & School of Physics and Astronomy, Sun Yat-Sen University (Zhuhai Campus), Zhuhai 519082, China; 2 State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University (Guangzhou Campus), Guangzhou 510275, China
Abstract  We present a cluster mean-field study for ground-state phase diagram and many-body dynamics of spin-1 bosons confined in a two-chain Bose-Hubbard ladder (BHL). For unbiased BHL, we find superfluid (SF) phase and integer filling Mott insulator (IntMI) phase. For biased BHL, in addition to the SF and IntMI phases, there appears half-integer filling Mott insulator (HIntMI) phase. The phase transition between the SF and IntMI phases can be first order at a part of phase boundaries, while the phase transition between the SF and HIntMI phases is always second order. By tuning the bias energy, we report on the change of the nature of SF-MI phase transitions. Furthermore, we study the effect of the spin-dependent interaction on the many-body population dynamics. The spin-dependent interaction can lead to rich dynamical behaviors, but does not influence the particle transfer efficiency. Our results indicate a way to tune the nature of the SF-MI phase transition and open a new avenue to study the many-body dynamics of spinor bosons in optical lattices.
Keywords:  spinor Bose gases      superfluid-Mott insulator phase transition      Landau-Zener dynamics  
Published:  26 January 2021
PACS:  67.85.Fg (Multicomponent condensates; spinor condensates)  
  37.10.Jk (Atoms in optical lattices)  
  05.30.Rt (Quantum phase transitions)  
  67.85.Hj (Bose-Einstein condensates in optical potentials)  
Fund: Project supported by the Key-Area Research and Development Program of GuangDong Province, China (Grant No. 2019B030330001), the National Natural Science Foundation of China (Grant Nos. 11874434 and 11574405), the Science and Technology Program of Guangzhou, China (Grant No. 201904020024), and the Guangzhou Science and Technology Projects (Grant No. 202002030459).
Corresponding Authors:  Corresponding author. E-mail: hjiahao@mail2.sysu.edu.cn Corresponding author. E-mail: lichaoh2@mail.sysu.edu.cn   

Cite this article: 

Li Zhang(张莉), Wenjie Liu(柳文洁), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红) Cluster mean-field study of spinor Bose-Hubbard ladder: Ground-state phase diagram and many-body population dynamics 2021 Chin. Phys. B 30 026701

1 Jaksch D, Bruder C, Cirac J I, Gardiner C W and Zoller P 1998 Phys. Rev. Lett. 81 3108
2 Greiner M, Mandel O, Esslinger T, H\"ansch T W and Bloch I 2002 Nature 415 39
3 Bloch I 2005 Nat. Phys. 1 23
4 Lewenstein M, Sanpera A, Ahufinger V, Damski B, Sen(De) A and Sen U 2007 Adv. Phys. 56 243
5 Gross C and Bloch I 2017 Science 357 995
6 Lee C 2004 Phys. Rev. Lett. 93 120406
7 Polkovnikov A 2005 Phys. Rev. B 72 161201
8 Kollath C, L\"auchliAM and Altman E 2007 Phys. Rev. Lett. 98 180601
9 Will S, Best T, Schneider U, Hackerm\"uller L, L\"uhmann D S and Bloch I 2010 Nature 465 1476
10 van Oosten D, van der Straten P and Stoof H T C 2001 Phys. Rev. A 63 053601
11 Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
12 Wu B and NiuQ 2000 Phys. Rev. A 61 023402
13 Liu J, Fu L, Ou B Y, Chen S G, Choi D I, Wu B and Niu Q 2002 Phys. Rev. A 66 023404
14 Trimborn F, Witthaut D, Kegel V and Korsch H J 2010 New J. Phys. 12 053010
15 Chen Y A, Huber S D, Trotzky S, Bloch I and Altman E 2011 Nat. Phys. 7 61
16 Kasztelan C, Trotzky S, Chen Y A, Bloch I, McCulloch I P, Schollw\"ock U and Orso G 2011 Phys. Rev. Lett. 106 155302
17 Caballero-Ben\'ítez S F and Paredes R 2012 Phys. Rev. A 85 023605
18 Tschischik W, Haque M and Moessner R 2012 Phys. Rev. A 86 063633
19 Zhong H, Xie Q, Huang J, Qin X, Deng H, Xu J and Lee C 2014 Phys. Rev. A 90 023635
20 Deng H, Dai H, Huang J, Qin X, Xu J, Zhong H, He C and Lee C 2015 Phys. Rev. A 92 023618
21 Ke Y, Qin X, Zhong H, Huang J, He C and Lee C 2015 Phys. Rev. A 91 053409
22 Huang J, Gong P, Qin X, Zhong H and Lee C 2016 Phys. Rev. A 94 023618
23 Landau L D1932 Phys. Z. Sowjet. 2 46
24 Zener C and Fowler R H 1932 Proc. R. Soc. Lond. A 137 696
25 Demler E and Zhou F 2002 Phys. Rev. Lett. 88 163001
26 Imambekov A, Lukin M and Demler E 2003 Rev. Rev. A 68 063602
27 Rizzi M, Rossini D, De Chiara G, Montangero S and Fazio R2005 Rev. Rev. Lett. 95 240404
28 Juliá-D\'íaz B, Mel\'e-Messeguer M, Guilleumas M and Polls A 2009 Rev. Rev. A 80 043622
29 Stamper-Kurn D M and UedaM 2013 Rev. Mod. Phys. 85 1191
30 Tian T, Cai Y, Wu X and Wen Z 2020 SIAM J. Sci. Comput. 42 B983
31 Krutitsky K V and Graham R 2004 Phys. Rev. A 70 063610
32 Krutitsky K V, Timmer M and Graham R 2005 Phys. Rev. A 71 033623
33 Kimura T, Tsuchiya S and Kurihara S 2005 Phys. Rev. Lett. 94 110403
34 Batrouni G G, Rousseau V G and Scalettar R T 2009 Phys. Rev. Lett. 102 140402
35 Jiang J, Zhao L, Wang S T, Chen Z, Tang T, Duan L M and Liu Y 2016 Phys. Rev. A 93 063607
36 Becker C, Soltan-Panahi P, Kronj\"ager J, D\"orscher S, Bongs K and SengstockK 2010 New J. Phys. 12 065025
37 Widera A, Gerbier F, F\"olling S, Gericke T, Mandel O and Bloch I 2005 Phys. Rev. Lett. 95 190405
38 Widera A, Gerbier F, F\"olling S, Gericke T, Mandel O and Bloch I 2006 New J. Phys. 8 152
39 Mahmud K W and Tiesinga E 2013 Phys. Rev. A 88 023602
40 Zhao L, Jiang J, Tang T, Webb M and LiuY 2015 Phys. Rev. Lett. 114 225302
41 Chen Z, Tang T, Austin J, Shaw Z, Zhao L and Liu Y 2019 Phys. Rev. Lett. 123 113002
42 Carvalho D W S, Foerster A and Gusm\ ao M A 2018 Phys. Rev. A 97 033615
43 Buonsante P, Penna V and Vezzani A 2004 Phys. Rev. A 70 061603
44 McIntosh T, Pisarski P, Gooding R J and Zaremba E 2012 Phys. Rev. A 86 013623
45 L\"uhmann D S 2013 Phys. Rev. A 87 043619
46 Zhang L, Qin X, Ke Y and Lee C 2016 Phys. Rev. A 94 023634
47 Pisarski P, Jones R M and Gooding R J 2011 Phys. Rev. A 83 053608
48 Yamamoto D, Danshita I and S\'adeMelo C A R 2012 Phys. Rev. A 85 021601
49 Ho T L 1998 Phys. Rev. Lett. 81 742
50 Tsuchiya S, Kurihara S and Kimura T 2004 Phys. Rev. A 70 043628
[1] Spin-orbit-coupled spin-1 Bose-Einstein condensates confined in radially periodic potential
Ji Li(李吉), Tianchen He(何天琛), Jing Bai(白晶), Bin Liu(刘斌), and Huan-Yu Wang(王寰宇). Chin. Phys. B, 2021, 30(3): 030302.
[2] Weakly interacting spinor Bose-Einstein condensates with three-dimensional spin-orbit coupling
Shu-Wei Song(宋淑伟), Rui Sun(孙蕊), Hong Zhao(赵洪), Xuan Wang(王暄), Bao-Zhong Han(韩宝忠). Chin. Phys. B, 2016, 25(4): 040305.
[3] Phase diagram and collective modes in Rashba spin–orbit coupled BEC: Effect of in-plane magnetic field
Dong Dong, Zou Xu-Bo, Guo Guang-Can. Chin. Phys. B, 2015, 24(7): 076701.
[4] Three-dimensional solitons in two-component Bose-Einstein condensates
Liu Yong-Kai, Yang Shi-Jie. Chin. Phys. B, 2014, 23(11): 110308.
[5] Ground state of rotating ultracold quantum gases with anisotropic spin–orbit coupling and concentrically coupled annular potential
Wang Xin, Tan Ren-Bing, Du Zhi-Jing, Zhao Wen-Yu, Zhang Xiao-Fei, Zhang Shou-Gang. Chin. Phys. B, 2014, 23(7): 070308.
No Suggested Reading articles found!