Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 077304    DOI: 10.1088/1674-1056/ab8db2
RAPID COMMUNICATION Prev   Next  

Improvement of valley splitting and valley injection efficiency for graphene/ferromagnet heterostructure

Longxiang Xu(徐龙翔)1, Wengang Lu(吕文刚)2,3, Chen Hu(胡晨)4, Qixun Guo(郭奇勋)1, Shuai Shang(尚帅)1, Xiulan Xu(徐秀兰)1, Guanghua Yu(于广华)1, Yu Yan(岩雨)5, Lihua Wang(王立华)6, Jiao Teng(滕蛟)1
1 Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing, 100083, China;
2 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 Beijing Key Laboratory for Nanomaterials and Nanodevices, Beijing 100190, China;
4 Center for the Physics of Materials and Department of Physics, McGill University, Montreal, Quebec H3A 2T8, Canada;
5 Corrosion and Protection Center, Key Laboratory for Environmental Fracture(MOE), University of Science and Technology Beijing, Beijing 100083, China;
6 Institute of Microstructure and Property of Advanced Materials, Beijing Key Laboratory of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, China
Abstract  The valley splitting has been realized in the graphene/Ni heterostructure with the splitting value of 14 meV, and the obtained valley injecting efficiency from the heterostructure into graphene was 6.18% [Phys. Rev. B 92 115404 (2015)]. In this paper, we report a way to improve the valley splitting and the valley injecting efficiency of the graphene/Ni heterostructure. By intercalating an Au monolayer between the graphene and the Ni, the split can be increased up to 50 meV. However, the valley injecting efficiency is not improved because the splitted valley area of graphene moves away from the Fermi level. Then, we mend the deviation by covering a monolayer of Cu on the graphene. As a result, the valley injecting efficiency of the Cu/graphene/Au/Ni heterostructure reaches 10%, which is more than 60% improvement compared to the simple graphene/Ni heterostructure. Then we theoretically design a valley-injection device based on the Cu/graphene/Au/Ni heterostructure and demonstrate that the valley injection can be easily switched solely by changing the magnetization direction of Ni, which can be used to generate and control the valley-polarized current.
Keywords:  valleytronics      two-dimensional materials      valley-polarized transport  
Received:  11 April 2020      Revised:  22 April 2020      Published:  05 July 2020
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  72.80.Vp (Electronic transport in graphene)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2017YFF0206104), the National Natural Science Foundation of China (Grant No. 51871018), Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, the Opening Project of Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics of Chinese Academy of Sciences, Beijing Natural Science Foundation, China (Grant No. Z180014), and Beijing Outstanding Young Scientists Projects, China (Grant No. BJJWZYJH01201910005018). We gratefully acknowledge the Chinese Academy of Sciences for providing computation facilities.
Corresponding Authors:  Wengang Lu, Jiao Teng     E-mail:  wglu@iphy.ac.cn;tengjiao@mater.ustb.edu.cn

Cite this article: 

Longxiang Xu(徐龙翔), Wengang Lu(吕文刚), Chen Hu(胡晨), Qixun Guo(郭奇勋), Shuai Shang(尚帅), Xiulan Xu(徐秀兰), Guanghua Yu(于广华), Yu Yan(岩雨), Lihua Wang(王立华), Jiao Teng(滕蛟) Improvement of valley splitting and valley injection efficiency for graphene/ferromagnet heterostructure 2020 Chin. Phys. B 29 077304

[1] Hu C, Lu W, Ji W, Yu G, Yan Y and Teng J 2015 Phys. Rev. B 92 115404
[2] Geim K and Novoselov K S 2007 Nat. Mater. 6 183
[3] Rycerz, Tworzydlo J and Beenakker C W J 2007 Nat. Phys. 3 172
[4] Gunlycke D and White C T 2011 Phys. Rev. Lett. 106 136806
[5] Jiang Y, Low T, Chang K, Katsnelson M I and Guinea F 2013 Phys. Rev. Lett. 110 046601
[6] Hu C, Lu W, Ji W, Yu G, Yan Y and Teng J 2015 Phys. Rev. B 92 115404
[7] Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809
[8] Shimazaki Y, Yamamoto M, Borzenets I V, Watanabe K, Taniguchi T and Tarucha S 2015 Nat. Phys. 11 1032
[9] Aivazian G, Gong Z, Jones A M, Chu R L, Yan J, Mandrus D G, Zhang C, Cobden D, Yao W and Xu X 2015 Nat. Phys. 11 148
[10] Srivastava A, Sidler M, Allain A V, Lembke D S, Kis A and Imamoğlu A 2015 Nat. Phys. 11 141
[11] Cai T, Yang S A, Li X, Zhang F, Shi J, Yao W and Niu Q 2013 Phys. Rev. B. 88 115140
[12] MacNeill D, Heikes C, Mak K F, Anderson Z, Kormányos A, Zólyomi V, Park J and Ralph D C 2015 Phys. Rev. Lett. 114 037401
[13] Mak K F, He K, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494
[14] Mak K F, McGill K L, Park J and McEuen P L 2014 Science 344 1489
[15] Suzuki R, Sakano M, Zhang Y J, Akashi R, Morikawa D, Harasawa A, Yaji K, Kuroda K, Miyamoto K, Okuda T, Ishizaka K, Arita R and Iwasa Y 2014 Nat. Nanotechnol. 9 611
[16] Wu S, Ross J S, Liu G B, Aivazian G, Jones A, Fei Z, Zhu W, Xiao D, Yao W, Cobden D and Xu X 2013 Nat. Phys. 9 149
[17] Jones A M, Yu H, Ghimire N J, Wu S, Aivazian G, Ross J S, Zhao B, Yan J, Mandrus D G, Xiao D, Yao W and Xu X 2013 Nat. Nanotechnol. 8 634
[18] Zeng H, Dai J, Yao W, Xiao D and Cui X 2012 Nat. Nanotechnol. 7 490
[19] Xu X, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343
[20] Kang M H, Jung S C and Park J W 2010 Phys. Rev. B. 82 085409
[21] Taylor J, Guo H and Wang J 2001 Phys. Rev. B 63 245407
[22] Maassen J, Ji W and Guo H 2010 Appl. Phys. Lett. 97 142105
[23] Perdew J P and Zunger A 1981 Phys. Rev. B. 23 5048
[24] Varykhalov A, Sánchez-Barriga J, Shikin A M, Biswas C, Vescovo E, Rybkin A, Marchenko D and Rader O 2008 Phys. Rev. Lett. 101 157601
[25] Varykhalov A, Scholz M R, Kim T K and Rader O 2010 Phys. Rev. B. 82 121101
[26] Marchenko D, Varykhalov A, Scholz M R, Bihlmayer G, Rashba E I, Rybkin A, Shikin A M and Rader O 2012 Nat. Commun. 3 1232
[27] Giovannetti G, Khomyakov P A, Brocks G, Karpan V M, J van den Brink and Kelly P J 2008 Phys. Rev. Lett. 101 026803
[28] Khomyakov P A, Giovannetti G, Rusu P C, Brocks G, J van den Brink and Kelly P J 2009 Phys. Rev. B. 79 195425
[29] Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Ponomarenko L A, Jiang D and Geim A K 2006 Phys. Rev. Lett. 97 016801
[30] Gorbachev R V, Tikhonenko F V, Mayorov A S, Horsell D W and Savchenko A K 2007 Phys. Rev. Lett. 98 176805
[31] Xiao D, Liu G B, Feng W, Xu X and Yao W 2012 Phys. Rev. Lett. 108 196802
[1] Progress on 2D topological insulators and potential applications in electronic devices
Yanhui Hou(侯延辉), Teng Zhang(张腾), Jiatao Sun(孙家涛), Liwei Liu(刘立巍), Yugui Yao(姚裕贵), Yeliang Wang(王业亮). Chin. Phys. B, 2020, 29(9): 097304.
[2] Two ultra-stable novel allotropes of tellurium few-layers
Changlin Yan(严长林), Cong Wang(王聪), Linwei Zhou(周霖蔚), Pengjie Guo(郭朋杰), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅), Zhihai Cheng(程志海), Yang Chai(柴扬), Anlian Pan(潘安练), Wei Ji(季威). Chin. Phys. B, 2020, 29(9): 097103.
[3] Modulation of carrier lifetime in MoS2 monolayer by uniaxial strain
Hao Hong(洪浩), Yang Cheng(程阳), Chunchun Wu(吴春春), Chen Huang(黄琛), Can Liu(刘灿), Wentao Yu(于文韬), Xu Zhou(周旭), Chaojie Ma(马超杰), Jinhuan Wang(王金焕), Zhihong Zhang(张智宏), Yun Zhao(赵芸), Jie Xiong(熊杰), Kaihui Liu(刘开辉). Chin. Phys. B, 2020, 29(7): 077201.
[4] Effects of layer stacking and strain on electronic transport in two-dimensional tin monoxide
Yanfeng Ge(盖彦峰), Yong Liu(刘永). Chin. Phys. B, 2019, 28(7): 077104.
[5] Efficient doping modulation of monolayer WS2 for optoelectronic applications
Xinli Ma(马新莉), Rongjie Zhang(张荣杰), Chunhua An(安春华), Sen Wu(吴森), Xiaodong Hu(胡晓东), Jing Liu(刘晶). Chin. Phys. B, 2019, 28(3): 037803.
[6] Visible-to-near-infrared photodetector based on graphene-MoTe2-graphene heterostructure
Rui-Xue Hu(户瑞雪), Xin-Li Ma(马新莉), Chun-Ha An(安春华), Jing Liu(刘晶). Chin. Phys. B, 2019, 28(11): 117802.
[7] Chemical vapor deposition growth of crystal monolayer SnS2 with NaCl-assistant
Xiao-Xu Liu(刘晓旭), Da-Wei He(何大伟), Jia-Qi He(何家琪), Yong-Sheng Wang(王永生), Ming Fu(富鸣). Chin. Phys. B, 2019, 28(11): 118101.
[8] Emerging properties of two-dimensional twisted bilayer materials
Yang Cheng(程阳), Chen Huang(黄琛), Hao Hong(洪浩), Zixun Zhao(赵子荀), Kaihui Liu(刘开辉). Chin. Phys. B, 2019, 28(10): 107304.
[9] Recent progress on the prediction of two-dimensional materials using CALYPSO
Cheng Tang(唐程), Gurpreet Kour, Aijun Du(杜爱军). Chin. Phys. B, 2019, 28(10): 107306.
[10] Photodetectors based on two-dimensional materials and organic thin-film heterojunctions
Jiayue Han(韩嘉悦), Jun Wang(王军). Chin. Phys. B, 2019, 28(1): 017103.
[11] Room-temperature infrared photodetectors with hybrid structure based on two-dimensional materials
Tiande Liu(刘天德), Lei Tong(童磊), Xinyu Huang(黄鑫宇), Lei Ye(叶镭). Chin. Phys. B, 2019, 28(1): 017302.
[12] Two-dimensional materials-decorated microfiber devices for pulse generation and shaping in fiber lasers
Zhi-Chao Luo(罗智超), Meng Liu(刘萌), Ai-Ping Luo(罗爱平), Wen-Cheng Xu(徐文成). Chin. Phys. B, 2018, 27(9): 094215.
[13] High quality PdTe2 thin films grown by molecular beam epitaxy
En Li(李恩), Rui-Zi Zhang(张瑞梓), Hang Li(李航), Chen Liu(刘晨), Geng Li(李更), Jia-Ou Wang(王嘉鸥), Tian Qian(钱天), Hong Ding(丁洪), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱), Xiao Lin(林晓), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2018, 27(8): 086804.
[14] Electronic and magnetic properties of semihydrogenated, fully hydrogenated monolayer and bilayer MoN2 sheets
Yan-Chao She(佘彦超), Zhao Wei(魏昭), Kai-Wu Luo(罗开武), Yong Li(李勇), Yun Zhang(张云), Wei-Xi Zhang(张蔚曦). Chin. Phys. B, 2018, 27(6): 060306.
[15] Direct observation of melted Mott state evidenced from Raman scattering in 1T-TaS2 single crystal
Qing Hu(胡庆), Cong Yin(尹聪), Leilei Zhang(张雷雷), Li Lei(雷力), Zhengshang Wang(王正上), Zhiyu Chen(陈志禹), Jun Tang(唐军), Ran Ang(昂然). Chin. Phys. B, 2018, 27(1): 017104.
No Suggested Reading articles found!