Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 077104    DOI: 10.1088/1674-1056/ab8d9d
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Exciton optical absorption in asymmetric ZnO/ZnMgO double quantum wells with mixed phases

Zhi-Qiang Han(韩智强), Li-Ying Song(宋丽颖), Yu-Hai Zan(昝宇海), Shi-Liang Ban(班士良)
School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
Abstract  The optical absorption of exciton interstate transition in Zn1-xlMgxlO/ZnO/Zn1-xcMgxcO/ZnO/Zn1-xrMgxrO asymmetric double quantum wells (ADQWs) with mixed phases of zinc-blende and wurtzite in Zn1-xMgxO for 0.37< x < 0.62 is discussed. The mixed phases are taken into account by our weight model of fitting. The states of excitons are obtained by a finite difference method and a variational procedure in consideration of built-in electric fields (BEFs) and the Hartree potential. The optical absorption coefficients (OACs) of exciton interstate transition are obtained by the density matrix method. The results show that Hartree potential bends the conduction and valence bands, whereas a BEF tilts the bands and the combined effect enforces electrons and holes to approach the opposite interfaces to decrease the Coulomb interaction effects between electrons and holes. Furthermore, the OACs indicate a transformation between direct and indirect excitons in zinc-blende ADQWs due to the quantum confinement effects. There are two kinds of peaks corresponding to wurtzite and zinc-blende structures respectively, and the OACs merge together under some special conditions. The computed result of exciton interband emission energy agrees well with a previous experiment. Our conclusions are helpful for further relative theoretical studies, experiments, and design of devices consisting of these quantum well structures.
Keywords:  quantum well      mixed phase      exciton transition      direct and indirect exciton      optical absorption  
Received:  21 December 2019      Revised:  18 April 2020      Published:  05 July 2020
PACS:  71.35.-y (Excitons and related phenomena)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  73.21.Fg (Quantum wells)  
  71.55.Gs (II-VI semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61764012).
Corresponding Authors:  Shi-Liang Ban     E-mail:  slban@imu.edu.cn

Cite this article: 

Zhi-Qiang Han(韩智强), Li-Ying Song(宋丽颖), Yu-Hai Zan(昝宇海), Shi-Liang Ban(班士良) Exciton optical absorption in asymmetric ZnO/ZnMgO double quantum wells with mixed phases 2020 Chin. Phys. B 29 077104

[1] Sato S and Satoh S 1999 Elctron. Lett. 35 1251
[2] Salhi A, Rouillard Y, Angellier J, Grech P and Vicet A 2004 Elctron. Lett. 40 424
[3] Simoyama T, Yoshida H, Kasai J I, Mozume T and Ishikawa H 2009 Appl. Phys. Lett. 94 101902
[4] Choy W C H, Li E and Weiss B 1998 IEEE J. Quantum Electron. 34 1846
[5] Zhang Y J, Zhang X H, Tang B, Tian C, Xu C Y, Dong H X and Zhou W H 2018 Nanoscale 10 14082
[6] Zhang X H, Zhang Y J, Dong H X, Tang B, Li D H, Tian C, Xu C Y and Zhou W H 2019 Nanoscale 11 4496
[7] Ju Z G, Shan C X, Yang C L, Zhang J Y, Yao B, Zhao D X, Shen D Z and Fan X W 2009 Appl. Phys. Lett. 94 101902
[8] Park S-H and Ahn D 2007 J. Cryst. Growth 301-302 353
[9] Yano M, Hashimoto K, Fujimoto K, Koike K, Sasa S, Inoue M, Uetsuji Y, Ohnishi Y T and Inaba K 2007 J. Cryst. Growth 301-302 353
[10] Takeuchi I, Yang W, Chang K S, Aronova M A, Venkatesan T, Vispute R D, and Bendersky L A 2004 J. Appl. Phys. 94 7336
[11] Fan X F, Sun H D, Shen Z X, Kuo J L and Lu Y M 2015 J. Nanomater. 2015 7
[12] Riane H, Mokaddem A, Temimi L, Doumi B, Bahlouli S and Hamdache F 2017 J. Adv. Manuf. Tech. 89 629
[13] Djelal A, Chaibi K, Tari N, Zitouni K and Kadri A 2017 Superlattice Microst. 109 81
[14] Zippel J, Heitsch S, Stölzel M, Müller A, Wenckstern H, Benndorf G, Lorenz M, Hochmuth H and Grundmann M 2010 J. Lumin. 130 520
[15] Segawa Y, Sun H D, Makino T, Kawasaki M and Koinuma H 2015 Phys. Status Solidi A 192 14
[16] Stachowicz M, Pietrzyk M A, Sajkowski J M, Przezdziecka E, Teisseyre H, Witkowski B, Alves E and Kozanecki A 2017 J. Lumin. 186 262
[17] Yu F M, Zhang L and Guo K 2011 Superlattice Microst. 50 128
[18] Gu Z, Zhu Z N, Wang M M, Wang Y Q, Wang M S, Qu Y and Ban S L 2017 Superlattice Microst. 102 391
[19] Song L Y, Han Z Q, Zan Y H and Ban S L 2019 Opt. Commun. 444 142
[20] Asgari A, Safa S and Mouchliadis L 2011 Superlattice Microst. 49 487
[21] Grigoryev P S, Kurdyubov A S, Kuznetsova M S, Ignatiev I V, Efimov Y P, Eliseev S A, Petrov V V, Lovtcius V A and Shapochkin P Y 2016 Superlattice Microst. 97 452
[22] Tan C M, Xu J M and Zukotynski S 1993 J. Appl. Phys. 73 2921
[23] Brounkov P, Benyattou N T and Guillot G 1996 J. Appl. Phys. 80 864
[24] Meng L, Zhang J, Li Q and Hou X 2015 J. Nanomater. 2015 7
[25] Xia C, Zhang H, An J, Wei S and Jia Y 2003 Phys. Rev. B 68 205314
[26] Senger R T and Bajaj K K 2003 Phys. Rev. B 68 205314
[27] Elangovan P, John Peter A and Kyoo Yoo C 2013 J. Lumin. 143 314
[28] Shi J J and Goldys E M 1999 IEEE T. Electron. Dev. 46 83
[29] Miranda G L, Mora-Ramos M E and Duque C A 2013 Physica B: Condens. Matter 409 78
[30] Gopal P and Spaldin N A 2006 J. Electron. Mater. 35 538
[31] Duan Y, Qin L, Tang G and Shi L 2008 Eur. Phys. J. B 66 201
[32] Furno E, Chiaria S, Penna M, Bellotti E and Goano M 2010 J. Electron. Mater. 39 936
[33] Tanaka H, Fujita S and Fujita S 2005 Appl. Phys. Lett. 86 192911
[34] Djelal A, Chaibi K, Tari N, Zitouni K and Kadri A 2017 Superlattice Microst. 109 81
[35] Xu Y N and Ching W Y 1991 Phys. Rev. B 43 4461
[36] Park S H and Ahn D 2007 Opt. Quantum Electron. 38 935
[37] Coli G and Bajaj K K 2001 Appl. Phys. Lett. 78 2861
[38] Su S C, Zhu H, Zhang L X, He M L, Zhao Z, Yu S F, Wang J N and Ling F C C 2013 Appl. Phys. Lett. 103 131104
[1] Dispersion of exciton-polariton based on ZnO/MgZnO quantum wells at room temperature
Huying Zheng(郑湖颖), Zhiyang Chen(陈智阳), Hai Zhu(朱海), Ziying Tang(汤梓荧), Yaqi Wang(王亚琪), Haiyuan Wei(韦海园), Chongxin Shan(单崇新). Chin. Phys. B, 2020, 29(9): 097302.
[2] Optical properties of core/shell spherical quantum dots
Shuo Li(李硕), Lei Shi(石磊), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2020, 29(9): 097802.
[3] Optical absorption in asymmetrical Gaussian potential quantum dot under the application of an electric field
Xue-Chao Li(李学超), Chun-Bao Ye(叶纯宝), Juan Gao(高娟), Bing Wang(王兵). Chin. Phys. B, 2020, 29(8): 087302.
[4] A method to extend wavelength into middle-wavelength infrared based on InAsSb/(Al)GaSb interband transition quantum well infrared photodetector
Xuan-Zhang Li(李炫璋), Ling Sun(孙令), Jin-Lei Lu(鲁金蕾), Jie Liu(刘洁), Chen Yue(岳琛), Li-Li Xie(谢莉莉), Wen-Xin Wang(王文新), Hong Chen(陈弘), Hai-Qiang Jia(贾海强), Lu Wang(王禄). Chin. Phys. B, 2020, 29(3): 038504.
[5] Evaluation of polarization field in InGaN/GaN multiple quantum well structures by using electroluminescence spectra shift
Ping Chen(陈平), De-Gang Zhao(赵德刚), De-Sheng Jiang(江德生), Jing Yang(杨静), Jian-Jun Zhu(朱建军), Zong-Shun Liu(刘宗顺), Wei Liu(刘炜), Feng Liang(梁锋), Shuang-Tao Liu(刘双韬), Yao Xing(邢瑶), Li-Qun Zhang(张立群). Chin. Phys. B, 2020, 29(3): 034206.
[6] Improvement of TE-polarized emission in type-Ⅱ InAlN-AlGaN/AlGaN quantum well
Yi Li(李毅), Youhua Zhu(朱友华), Meiyu Wang(王美玉), Honghai Deng(邓洪海), Haihong Yin(尹海宏). Chin. Phys. B, 2019, 28(9): 097801.
[7] Non-perturbative multiphoton excitation studies in an excitonic coupled quantum well system using high-intensity THz laser fields
Monica Gambhir, Vinod Prasad. Chin. Phys. B, 2019, 28(8): 087803.
[8] Vertical profile of aerosol extinction based on the measurement of O4 of multi-elevation angles with MAX-DOAS
Fusheng Mou(牟福生), Jing Luo(雒静), Suwen Li(李素文), Wei Shan(单巍), Lisha Hu(胡丽莎). Chin. Phys. B, 2019, 28(8): 084212.
[9] Nonlocal effect on resonant radiation force exerted on semiconductor coupled quantum well nanostructures
Jin-Ke Zhang(张金珂), Ting-Ting Zhang(张婷婷), Yu-Liang Zhang(张玉亮), Guang-Hui Wang(王光辉), Dong-Mei Deng(邓冬梅). Chin. Phys. B, 2019, 28(6): 066803.
[10] Progress in quantum well and quantum cascade infrared photodetectors in SITP
Xiaohao Zhou(周孝好), Ning Li(李宁), Wei Lu(陆卫). Chin. Phys. B, 2019, 28(2): 027801.
[11] Optical response of an inverted InAs/GaSb quantum well in an in-plane magnetic field
Xiaoguang Wu(吴晓光). Chin. Phys. B, 2019, 28(10): 107302.
[12] Photoluminescence properties of blue and green multiple InGaN/GaN quantum wells
Chang-Fu Li(李长富), Kai-Ju Shi(时凯居), Ming-Sheng Xu(徐明升), Xian-Gang Xu(徐现刚), Zi-Wu Ji(冀子武). Chin. Phys. B, 2019, 28(10): 107803.
[13] Solitons in nonlinear systems and eigen-states in quantum wells
Li-Chen Zhao(赵立臣), Zhan-Ying Yang(杨战营), Wen-Li Yang(杨文力). Chin. Phys. B, 2019, 28(1): 010501.
[14] Novel infrared differential optical absorption spectroscopy remote sensing system to measure carbon dioxide emission
Ru-Wen Wang(王汝雯), Pin-Hua Xie(谢品华), Jin Xu(徐晋), Ang Li(李昂). Chin. Phys. B, 2019, 28(1): 013301.
[15] Visualizing light-to-electricity conversion process in InGaN/GaN multi-quantum wells with a p-n junction
Yangfeng Li(李阳锋), Yang Jiang(江洋), Junhui Die(迭俊珲), Caiwei Wang(王彩玮), Shen Yan(严珅), Haiyan Wu(吴海燕), Ziguang Ma(马紫光), Lu Wang(王禄), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Hong Chen(陈弘). Chin. Phys. B, 2018, 27(9): 097104.
No Suggested Reading articles found!