Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 067502    DOI: 10.1088/1674-1056/ab889f
Special Issue: Virtual Special Topic — Magnetism and Magnetic Materials
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Physical properties and magnetic structure of a layered antiferromagnet PrPd0.82Bi2

Meng Yang(杨萌)1,2, Changjiang Yi(伊长江)1, Fengfeng Zhu(朱锋锋)3, Xiao Wang(王霄)3, Dayu Yan(闫大禹)1,2, Shanshan Miao(苗杉杉)1, Yixi Su(苏夷希)3, Youguo Shi(石友国)1,2
1 Beijing National Laboratory for Condensed Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Jülich Centre for Neutron Science(JCNS) at Heinz Maier-Leibnitz Zentrum(MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstraße 1, 85748 Garching, Germany
Abstract  We report the physical properties, crystalline and magnetic structures of singe crystals of a new layered antiferromagnetic (AFM) material PrPd0.82Bi2. The measurements of magnetic properties and heat capacity indicate an AFM phase transition at TN~7 K. A large Sommerfeld coefficient of 329.23 mJ·mol-1·K-2 is estimated based on the heat capacity data, implying a possible heavy-fermion behavior. The magnetic structure of this compound is investigated by a combined study of neutron powder and single-crystal diffraction. It is found that an A-type AFM structure with magnetic propagation wavevector k=(0 0 0) is formed below TN. The Pr3+ magnetic moment is aligned along the crystallographic c-axis with an ordered moment of 1.694(3) μB at 4 K, which is smaller than the effective moment of the free Pr3+ ion of 3.58 μB. PrPd0.82Bi2 can be grown as large as 1 mm×1 cm in area with a layered shape, and is very easy to be cleaved, providing a unique opportunity to study the interplay between magnetism, possible heavy fermions, and superconductivity.
Keywords:  correlated electronic system      layered antiferromagnet      neutron scattering      magnetic structure  
Received:  05 March 2019      Revised:  03 April 2020      Published:  05 June 2020
PACS:  75.30.Mb (Valence fluctuation, Kondo lattice, and heavy-fermion phenomena)  
  75.50.Ee (Antiferromagnetics)  
  25.40.Dn (Elastic neutron scattering)  
  28.20.Cz (Neutron scattering)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0302901 and 2016YFA0300604), the National Natural Science Foundation of China (Grant No. 11774399), Beijing Natural Science Foundation, China (Grant No. Z180008), the K. C. Wong Education Foundation (Grant No. GJTD-2018-01), the DAAD-PPP programme, and the joint German-Sino HGF-OCPC Postdoc Programme.
Corresponding Authors:  Yixi Su, Youguo Shi     E-mail:  y.su@fz-juelich.de;ygshi@iphy.ac.cn

Cite this article: 

Meng Yang(杨萌), Changjiang Yi(伊长江), Fengfeng Zhu(朱锋锋), Xiao Wang(王霄), Dayu Yan(闫大禹), Shanshan Miao(苗杉杉), Yixi Su(苏夷希), Youguo Shi(石友国) Physical properties and magnetic structure of a layered antiferromagnet PrPd0.82Bi2 2020 Chin. Phys. B 29 067502

[1] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[2] Matsuishi S, Inoue Y, Nomura T, Yanagi H, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 14428
[3] Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006
[4] Wang X C, Liu Q Q, Lv Y X, Gao W B, Yang L X, Yu R C, Li F Y and Jin C Q 2008 Solid State Commun. 148 538
[5] Johnston D C 2010 Adv. Phys. 59 803
[6] Ding H, Richard P, Nakayama K, Sugawara K, Arakane T, Sekiba Y, Takayama A, Souma S, Sato T, Takahashi T, Wang Z, Dai X, Fang Z, Chen G F, Luo J L and Wang N L 2008 Europhys. Lett. 83 47001
[7] Kurian J, Buckow A, Retzlaff R and Alff L 2013 Physica C 484 171
[8] Han F, Malliakas C D, Stoumpos C C, Sturza M, Claus H, Chung D Y and Kanatzidis M G 2013 Phys. Rev. B 88 144511
[9] Retzlaff R, Buckow A, Komissinskiy P, Ray S, Schmidt S, Mühlig H, Schmidl F, Seidel P, Kurian J and Alff L 2015 Phys. Rev. B 91 104519
[10] Katayama N, Kudo K, Onari S, Mizukami T, Sugawara K, Sugiyama Y, Kitahama Y, Iba K, Fujimura K, Nishimoto N, Nohara M and Sawa H 2013 J. Phys. Soc. Jpn. 82 123702
[11] Yakita H, Ogino H, Okada T, Yamamoto A, Kishio K, Tohei T, Ikuhara Y, Gotoh Y, Fujihisa H, Kataoka K, Eisaki H and Shimoyama J 2014 J. Am. Chem. Soc. 136 846
[12] Park J, Lee G, Wolff-Fabris F, Koh Y Y, Eom M J, Kim Y K, Farhan M A, Jo Y J, Kim C, Shim J H and Kim J S 2011 Phys. Rev. Lett. 107 126402
[13] Huang S, Kim J, Shelton W A, Plummer E W and Jin R 2017 Proc. Natl. Acad. Sci. USA 114 6256
[14] Wang Y Y, Yu Q H and Xia T L 2016 Chin. Phys. B 25 107503
[15] Gignoux D and Gomez-Sal J 1984 Phys. Rev. B 30 3967
[16] Muro Y, Takeda N and Ishikawa M 1997 J. Alloys Compd. 257 23
[17] Jung M H, Lacerda A H and Takabatake T 2002 Phys. Rev. B 65 132405
[18] Han F, Wan X, Phelan D, Stoumpos C C, Sturza M, Malliakas C D, Li Q, Han T H, Zhao Q, Chung D Y and Kanatzidis M G 2015 Phys. Rev. B 92 045112
[19] Kolenda M, Hofmann M, Leciejewicz J, Penc B, Szytula A and Zygmunt A 2001 J. Alloys Compd. 315 22
[20] Seibel E M, Xie W, Gibson Q D and Cava R J 2015 J. Solid State Chem. 230 318
[21] Thomas E L, Moldovan M, Young D P and Chan J Y 2005 Chem. Mater. 17 5810
[22] Mizoguchi H, Matsuishi S, Hirano M, Tachibana M, Takayama-Muromachi E, Kawaji H and Hosono H 2011 Phys. Rev. Lett. 106 057002
[23] Lin X, Straszheim W E, Bud'ko S L and Canfield P C 2013 J. Alloys Compd. 554 304
[24] Farhan M A, Lee G and Shim J H 2014 J. Phys.: Condens. Matter 26 042201
[25] Masuda H, Sakai H, Tokunaga M, Yamasaki Y, Miyake A, Shiogai J, Nakamura S, Awaji S, Tsukazaki A, Nakao H, Murakami Y, Arima T, Tokura Y and Ishiwata S 2016 Sci. Adv. 2 e1501117
[26] Kealhofer R, Jang S, Griffin S M, John C, Benavides K A, Doyle S, Helm T, Moll P J W, Neaton J B, Chan J Y, Denlinger J D and Analytis J G 2018 Phys. Rev. B 97 045109
[27] Borisenko S, Evtushinsky D, Gibson Q, Yaresko A, Koepernik K, Kim T, Ali M, van den Brink J, Hoesch M, Fedorov A, Haubold E, Kushnirenko Y, Soldatov I, Schäfer R and Cava R J 2019 Nat. Commun. 10 3424
[28] Liu J Y, Hu J, Zhang Q, Graf D, Cao H B, Radmanesh S M A, Adams D J, Zhu Y L, Cheng G F, Liu X, Phelan W A, Wei J, Jaime M, Balakirev F, Tennant D A, DiTusa J F, Chiorescu I, Spinu L and Mao Z Q 2017 Nat. Mater 16 905
[29] Yi C, Yang S, Yang M, Wang L, Matsushita Y, Miao S, Jiao Y, Cheng J, Li Y, Yamaura K, Shi Y and Luo J 2017 Phys. Rev. B 96 205103
[30] Wang H P, Wu D S, Shi Y G and Wang N L 2016 Phys. Rev. B 94 045112
[31] Beyermann W P, Hundley M F, Canfield P C, Thompson J D, Latroche M, Godart C, Selsane M, Fisk Z and Smith J L 1991 Phys. Rev. B 43 13130
[32] Pecharsky V, Gschneidner Jr K and Miller L 1991 Phys. Rev. B 43 10906
[33] Sologub O, Hiebl K, Rogl P, Noël H and Bodak O 1994 J. Alloys Compd. 210 153
[34] Thamizhavel A, Takeuchi T, Okubo T, Yamada M, Asai R, Kirita S, Galatanu A, Yamamoto E, Ebihara T, Inada Y, Settai R and Ōnuki Y 2003 Phys. Rev. B 68 054427
[35] Moon R M, Riste T and Koehler W C 1969 Phys. Rev. 181 920
[36] Rodríguez-Carvajal J 1993 Physica B 192 55
[37] Ressouche E 2014 ed V Simonet B Canals J. Robert S Petit and H Mutka JDN 13 02001
[38] Schärpf O and Capellmann H 1993 Phys. Stat. Sol. (a) 135 359
[39] Blundell S 2014 Magnetism in Condensed Matter (Oxford: Oxford Univ. Press)
[40] Pelissetto A and Vicari E 2002 Phys. Rep. 368 549
[41] Kodama K, Wakimoto S, Igawa N, Shamoto S, Mizoguchi H and Hosono H 2011 Phys. Rev. B 83 214512
[42] Adriano C, Rosa P F S, Jesus C B R, Mardegan J R L, Garitezi T M, Grant T, Fisk Z, Garcia D J, Reyes A P, Kuhns P L, Urbano R R, Giles C and Pagliuso P G 2014 Phys. Rev. B 90 235120
[1] Some experimental schemes to identify quantum spin liquids
Yonghao Gao(高永豪), Gang Chen(陈钢). Chin. Phys. B, 2020, 29(9): 097501.
[2] Spin waves and transverse domain walls driven by spin waves: Role of damping
Zi-Xiang Zhao(赵梓翔), Peng-Bin He(贺鹏斌), Meng-Qiu Cai(蔡孟秋), Zai-Dong Li(李再东). Chin. Phys. B, 2020, 29(7): 077502.
[3] Neutron-based characterization techniques for lithium-ion battery research
Enyue Zhao(赵恩岳), Zhi-Gang Zhang(张志刚), Xiyang Li(李西阳), Lunhua He(何伦华), Xiqian Yu(禹习谦), Hong Li(李泓), Fangwei Wang(王芳卫). Chin. Phys. B, 2020, 29(1): 018201.
[4] A revised jump-diffusion and rotation-diffusion model
Hua Li(李华), Yu-Hang Chen(陈昱沆), Bin-Ze Tang(唐宾泽). Chin. Phys. B, 2019, 28(5): 056105.
[5] A single-crystal neutron diffraction study on magnetic structure of CsCo2Se2
Juanjuan Liu(刘娟娟), Jieming Sheng(盛洁明), Wei Luo(罗伟), Jinchen Wang(汪晋辰), Wei Bao(鲍威), Jinhu Yang(杨金虎), Minghu Fang(方明虎), S A Danilkin. Chin. Phys. B, 2018, 27(11): 117401.
[6] Mn-based permanent magnets
Jinbo Yang(杨金波), Wenyun Yang(杨文云), Zhuyin Shao(邵珠印), Dong Liang(梁栋), Hui Zhao(赵辉), Yuanhua Xia(夏元华), Yunbo Yang(杨云波). Chin. Phys. B, 2018, 27(11): 117503.
[7] Recent progress on magnetic-field studies on quantum-spin-liquid candidates
Zhen Ma(马祯), Kejing Ran(冉柯静), Jinghui Wang(王靖珲), Song Bao(鲍嵩), Zhengwei Cai(蔡正蔚), Shichao Li(李世超), Jinsheng Wen(温锦生). Chin. Phys. B, 2018, 27(10): 106101.
[8] The magnetic properties and magnetocaloric effects in binary R-T (R=Pr, Gd, Tb, Dy, Ho, Er, Tm; T=Ga, Ni, Co, Cu) intermetallic compounds
Xin-Qi Zheng(郑新奇), Bao-Gen Shen(沈保根). Chin. Phys. B, 2017, 26(2): 027501.
[9] Multiscale structures and phase transitions in metallic glasses: A scattering perspective
Si Lan(兰司), Zhenduo Wu(吴桢舵), Xun-Li Wang(王循理). Chin. Phys. B, 2017, 26(1): 017104.
[10] Dynamic behaviors of water contained in calcium—silicate—hydrate gel at different temperatures studied by quasi-elastic neutron scattering spectroscopy
Zhou Yi(易洲), Pei-Na Deng(邓沛娜), Li-Li Zhang(张丽丽), Hua Li(李华). Chin. Phys. B, 2016, 25(10): 106401.
[11] Evolution of structure and physical properties in Al-substituted Ba-hexaferrites
Alex Trukhanov, Larisa Panina, Sergei Trukhanov, Vitalii Turchenko, Mohamed Salem. Chin. Phys. B, 2016, 25(1): 016102.
[12] Study of electronic and magnetic properties of MnS layers
R. Masrour, E. K. Hlil, M. Hamedoun, A. Benyoussef, O. Mounkachi. Chin. Phys. B, 2012, 21(12): 127101.
[13] Neutron diffraction study on composite compound Nd2Co7
Yang Yu-Qi, Li Guan-Nan, Wang Tong, Huang Qing-Zhen, Gao Qing-Qing, Li Jing-Bo, Liu Guang-Yao, Luo Jun, Rao Guang-Hui. Chin. Phys. B, 2011, 20(10): 106101.
[14] Vibrational analysis of L-serine using the density functional theory
Zhang Peng, Xu Chang-Ye, Han Sheng-Hao, Zhang Ying, Yin Wen, Li Ji-Chen. Chin. Phys. B, 2005, 14(12): 2585-2589.
[15] Vibration properties of low-fraction hydrogen in deuterium ices
Wang Yan, Dong Shun-Le. Chin. Phys. B, 2005, 14(10): 1942-1945.
No Suggested Reading articles found!