Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 054502    DOI: 10.1088/1674-1056/ab8217
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Parametric study of the clustering transition in vibration driven granular gas system

Qi-Lin Wu(吴麒麟)1,2, Mei-Ying Hou(厚美瑛)3, Lei Yang(杨磊)1, Wei Wang(王伟)1,2, Guang-Hui Yang(杨光辉)1, Ke-Wei Tao(陶科伟)1, Liang-Wen Chen(陈良文)1, Sheng Zhang(张晟)1
1 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Key Laboratory of Soft Matter Physics, Beijing National Laboratory for Condense Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  A parametric study of the clustering transition of a vibration-driven granular gas system is performed by simulation. The parameters studied include the global volume fraction of the system, the size of the system, the friction coefficient, and the restitution coefficient among particles and among particle-walls. The periodic boundary and fixed boundary of sidewalls are also checked in the simulation. The simulation results provide us the necessary "heating" time for the system to reach steady state, and the friction term needed to be included in the "cooling" time. A gas-cluster phase diagram obtained through Kolmogorov-Smirnov (K-S) test analysis using similar experimental parameters is given. The influence of the parameters to the transition is then investigated in simulations. This simulation investigation helps us gain understanding which otherwise cannot be obtained by experiment alone, and makes suggestions on the determination of parameters to be chosen in experiments.
Keywords:  granular gas      clustering      phase diagram  
Received:  13 February 2020      Accepted manuscript online: 
PACS:  45.70.-n (Granular systems)  
  45.70.Mg (Granular flow: mixing, segregation and stratification)  
  81.30.Dz (Phase diagrams of other materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1738120, 11474326, and 11705256), Young Scholar of CAS "Light of West China" Program for Guanghui Yang (Grant No. 2018-98), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA21010202), and the International Cooperation Project of China Manned Space Program.
Corresponding Authors:  Sheng Zhang     E-mail:  zhangsheng@impcas.ac.cn

Cite this article: 

Qi-Lin Wu(吴麒麟), Mei-Ying Hou(厚美瑛), Lei Yang(杨磊), Wei Wang(王伟), Guang-Hui Yang(杨光辉), Ke-Wei Tao(陶科伟), Liang-Wen Chen(陈良文), Sheng Zhang(张晟) Parametric study of the clustering transition in vibration driven granular gas system 2020 Chin. Phys. B 29 054502

[1] Jaeger H M, Nagel S R and Behringer R P 1996 Rev. Mod. Phys. 68 1259
[2] Kadanoff L P 1999 Rev. Mod. Phys. 71 435
[3] Gennes P G D 1999 Rev. Mod. Phys. 71 S374
[4] Hou M, Liu R, Zhai G, Sun Z, Lu K, Garrabos Y and Evesque P 2008 Microgravity Sci. Technol. 20 73
[5] Hou M, Li Y C, Liu R, Zhang Y and Lu K Q 2010 Phys. Status Solidi (a) 207 2739
[6] Wang W G 2018 Chin. Phys. B 27 084501
[7] Miller S and Luding S 2004 Phys. Rev. E 69 031305
[8] Falcon E, Wunenburger R, Évesque P, Fauve S, Chabot C, Garrabos Y and Beysens D 1999 Phys. Rev. Lett. 83 440
[9] Pathak S N, Jabeen Z, Das D and Rajesh R 2014 Phys. Rev. Lett. 112 038001
[10] Falcon E, Fauve S and Laroche C 1999 Eur. Phys. J. B 9 183
[11] Kudrolli A, Wolpert M and Gollub J P 1997 Phys. Rev. Lett. 78 1383
[12] Noirhomme M, Ludewig F, Vandewalle N and Opsome E 2017 Phys. Rev. E 95 022905
[13] Opsomer E, Ludewig F and Vandewalle N 2011 Phys. Rev. E 84 051306
[14] Opsomer E, Ludewig F and Vandewalle N 2012 Europhys. Lett. 99 40001
[15] Kloss C and Goniva C 2010 Proc. 5th International Conference on Discrete Element Methods, August 25-26, 2010 London, UK
[16] Noirhomme M, Cazaubiel A, Darras A, Falcon E, Fischer D, Garrabos Y, Lecoutre-Chabot C, Merminod S, Opsomer E, Palencia F, Schockmel J, Stannarius R and Vandewalle N 2018 Europhys. Lett. 123 14003
[17] Sachs L 1997 Einführung in die Statistik. In: Angewandte Statistik (Berlin: Springer) p. 427
[18] Rycroft C 2009 Voro ++: A three-dimensional Voronoi cell library in C ++, Lawrence Berkeley National Lab. (LBNL), Berkeley, CA
[19] Ciamarra M P, Coniglio A and Nicodemi M 2006 Phys. Rev. Lett. 97 158001
[20] Maaß C C, Isert N, Maret G and Aegerte C M 2008 Phys. Rev. Lett. 100 248001
[21] Harth K, Trittel T, Wegner S and Stannarius R 2018 Phys. Rev. Lett. 120 214301
[22] Haff P K 1983 J. Fluid Mech. 134 401
[1] Magnetization and magnetic phase diagrams of a spin-1/2 ferrimagnetic diamond chain at low temperature
Tai-Min Cheng(成泰民), Mei-Lin Li(李美霖), Zhi-Rui Cheng(成智睿), Guo-Liang Yu(禹国梁), Shu-Sheng Sun(孙树生), Chong-Yuan Ge(葛崇员), and Xin-Xin Zhang(张新欣). Chin. Phys. B, 2021, 30(5): 057503.
[2] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
[3] Physical properties and phase diagram of NaFe1 -xVxAs
Guang-Yang Dai(代光阳), Xin He(何鑫), Zhi-Wen Li(李芷文), Chang-Ling Zhang(张昌玲), Lu-Chuan Shi(史鲁川), Run-Ze Yu(于润泽), Xian-Cheng Wang(望贤成), and Chang-Qing Jin(靳常青). Chin. Phys. B, 2021, 30(1): 017401.
[4] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[5] Phase-field simulation of superconductor vortex clustering in the vicinity of ferromagnetic domain bifurcations
Hasnain Mehdi Jafri, Jing Wang(王静), Chao Yang(杨超), Jun-Sheng Wang(王俊升), and Hou-Bing Huang(黄厚兵). Chin. Phys. B, 2020, 29(12): 127402.
[6] Phase diagrams and magnetic properties of the mixed spin-1 and spin-3/2 Ising ferromagnetic thin film:Monte Carlo treatment
B Boughazi, M Boughrara, M Kerouad. Chin. Phys. B, 2019, 28(2): 027501.
[7] Equation of state for aluminum in warm dense matter regime
Kun Wang(王坤), Dong Zhang(张董), Zong-Qian Shi(史宗谦), Yuan-Jie Shi(石元杰), Tian-Hao Wang(王天浩), Yue Zhang(张阅). Chin. Phys. B, 2019, 28(1): 016401.
[8] Experimental and numerical study on energy dissipation in freely cooling granular gases under microgravity
Wen-Guang Wang(王文广), Mei-Ying Hou(厚美瑛), Ke Chen(陈科), Pei-Dong Yu(虞培东), Matthias Sperl. Chin. Phys. B, 2018, 27(8): 084501.
[9] Cubic anvil cell apparatus for high-pressure and low-temperature physical property measurements
Jin-Guang Cheng(程金光), Bo-Sen Wang(王铂森), Jian-Ping Sun(孙建平), Yoshiya Uwatoko. Chin. Phys. B, 2018, 27(7): 077403.
[10] Structural phase transition, precursory electronic anomaly, and strong-coupling superconductivity in quasi-skutterudite (Sr1-xCax)3Ir4Sn13 and Ca3Rh4Sn13
Jun Luo(罗军), Jie Yang(杨杰), S Maeda, Zheng Li(李政), Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2018, 27(7): 077401.
[11] Flowrate behavior and clustering of self-driven robots in a channel
Bo Tian(田波), Wang-Ping Sun(孙王平), Ming Li(李明), Rui Jiang(姜锐), Mao-Bin Hu(胡茂彬). Chin. Phys. B, 2018, 27(3): 038902.
[12] Calculation of electric field-temperature (E, T) phase diagram of a ferroelectric liquid crystal near the SmA-SmCα* transition
F Trabelsi, H Dhaouadi, O Riahi, T Othman. Chin. Phys. B, 2018, 27(3): 037701.
[13] Epitaxially strained SnTiO3 at finite temperatures
Dawei Wang(王大威), Laijun Liu(刘来君), Jia Liu(刘佳), Nan Zhang(张楠), Xiaoyong Wei(魏晓勇). Chin. Phys. B, 2018, 27(12): 127702.
[14] Electro-optical properties and (E, T) phase diagram of fluorinated chiral smectic liquid crystals
R Zgueb, H Dhaouadi, T Othman. Chin. Phys. B, 2018, 27(10): 107701.
[15] DEM simulation of granular segregation in two-compartment system under zero gravity
Wenguang Wang(王文广), Zhigang Zhou(周志刚), Jin Zong(宗谨), Meiying Hou(厚美瑛). Chin. Phys. B, 2017, 26(4): 044501.
No Suggested Reading articles found!