Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(1): 018901    DOI: 10.1088/1674-1056/ab5935
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev  

Major impact of queue-rule choice on the performance of dynamic networks with limited buffer size

Xiang Ling(凌翔)1, Xiao-Kun Wang(王晓坤)1, Jun-Jie Chen(陈俊杰)1, Dong Liu(刘冬)2, Kong-Jin Zhu(朱孔金)1, Ning Guo(郭宁)1
1 School of Automotive and Transportation Engineering, Hefei University of Technology, Hefei 230009, China;
2 School of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang 621010, China
Abstract  We investigate the similarities and differences among three queue rules, the first-in-first-out (FIFO) rule, last-in-first-out (LIFO) rule and random-in-random-out (RIRO) rule, on dynamical networks with limited buffer size. In our network model, nodes move at each time step. Packets are transmitted by an adaptive routing strategy, combining Euclidean distance and node load by a tunable parameter. Because of this routing strategy, at the initial stage of increasing buffer size, the network density will increase, and the packet loss rate will decrease. Packet loss and traffic congestion occur by these three rules, but nodes keep unblocked and lose no packet in a larger buffer size range on the RIRO rule networks. If packets are lost and traffic congestion occurs, different dynamic characteristics are shown by these three queue rules. Moreover, a phenomenon similar to Braess' paradox is also found by the LIFO rule and the RIRO rule.
Keywords:  dynamical network      queue rule      buffer size      traffic congestion  
Received:  17 October 2019      Revised:  11 November 2019      Accepted manuscript online: 
PACS:  89.75.Hc (Networks and genealogical trees)  
  45.70.Vn (Granular models of complex systems; traffic flow)  
  05.70.Fh (Phase transitions: general studies)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 71801066 and 71431003) and the Fundamental Research Funds for the Central Universities of China (Grant Nos. PA2019GDQT0020 and JZ2017HGTB0186).
Corresponding Authors:  Ning Guo     E-mail:  guoning_945@126.com

Cite this article: 

Xiang Ling(凌翔), Xiao-Kun Wang(王晓坤), Jun-Jie Chen(陈俊杰), Dong Liu(刘冬), Kong-Jin Zhu(朱孔金), Ning Guo(郭宁) Major impact of queue-rule choice on the performance of dynamic networks with limited buffer size 2020 Chin. Phys. B 29 018901

[1] Pastor-Satorras R and Vespignani A 2001 Phys. Rev. Lett. 86 3200
[2] Liu X, Wang J F, Wei J, Menno J, Jeroen S T and Zhao H 2018 Chin. Phys. B 27 120501
[3] Du W B, Liang B Y, Yan G, et al. 2016 Chin. J. Aeronautics 30 330
[4] Zhou J and Liu Z H 2008 Front. Phys. Chin. 3 331
[5] Strogatz S 2001 Nature 410 268
[6] Guo R Y and Huang H J 2008 Chin. Phys. B 17 1698
[7] Du W B, Zhou X L, Lordan O Wang Z, Zhao C and Zhu Y B 2016 Trans. Res. Part. E 89 108
[8] Du W B, Zhang M Y, Zhang Y, Cao X B and Zhang Z 2018 Trans. Res. Part. E 118 466
[9] Du W B, Zhang M Y, Ying W, Perc M, Tang K, Cao X B and Wu D P 2018 Appl. Math. Comput. 338 33
[10] Watts D J and Strogatz S H 1998 Nature 393 440
[11] Vinel A, Lan L and Lyamin N 2015 IEEE Commun. Mag. 53 192
[12] Buldyrev S V, Parshani R, Paul G, et al. 2010 Nature 464 1025
[13] Yang H X, Tang M and Lai Y C 2015 Phys. Rev. E 91 062817
[14] Zhang X, Boccaletti S, Guan S and Liu Z 2015 Phys. Rev. Lett. 114 038701
[15] Donoho D L 2006 IEEE Trans. Inform. Theory 52 1289
[16] Ling X, Hu M B and Ding J X 2012 Chin. Phys. B 21 098902
[17] Yan G, Zhou T, Hu B, Fu Z Q and Wang B H 2006 Phys. Rev. E 73 046108
[18] Zhou T, Sun D H, Li H M and Liu W N 2014 Chin. Phys. B 23 050203
[19] Chen S, Huang W, Cattani C and Altieri G 2012 Math. Probl. Eng. 2012 2 194
[20] Jian Y H, Liu E W, Zhang Z Q and Qu X Y 2015 IEEE Commun. Lett. 19 625
[21] Ge H X, Yu J and Lo S M 2012 Chin. Phys. Lett. 29 050502
[22] Li S B, Sun Z X, Liu J H and Chen H H 2016 Chin. Phys. B 25 088902
[23] Jiang Z Y and Liang M G 2013 Physica A 392 1894
[24] Jiang Z Y, Liang M G and An W J 2014 Physica A 394 379
[25] Song H Q and Guo J 2015 Chin. Phys. B 24 108901
[26] Ling X, Hu M B, Du W B, Jiang R, Wu Y H and Wu Q S 2010 Phys. Lett. A 374 4825
[27] Yang X X, Li J, Pu C L, Yan M C, Sharafat R R, Yang J, Gakis K and Pardalos P M 2017 Phys. Rev. E 95 012322
[28] Yang H X and Tang M 2014 Physica A 402 1
[29] Gao L, Shu P P, Tang M, Wang W and Gao H 2019 Phys. Rev. E 100 012310
[30] Braess D, Nagurney A and Wakolbinger T 2005 Transp. Sci. 39 446
[31] Manfredi S, Di Tucci E and Latora V 2018 Phys. Rev. Lett. 120 068301
[1] Successive lag synchronization on dynamical networks with communication delay
Xin-Jian Zhang(张新建), Ai-Ju Wei(韦爱举), Ke-Zan Li(李科赞). Chin. Phys. B, 2016, 25(3): 038901.
[2] A new coupled map car-following model considering drivers’ steady desired speed
Zhou Tong, Sun Di-Hua, Li Hua-Min, Liu Wei-Ning. Chin. Phys. B, 2014, 23(5): 050203.
[3] Hash function construction using weighted complex dynamical networks
Song Yu-Rong, Jiang Guo-Ping. Chin. Phys. B, 2013, 22(4): 040506.
[4] Stochastic synchronization for time-varying complex dynamical networks
Guo Xiao-Yong,Li Jun-Min. Chin. Phys. B, 2012, 21(2): 020501.
[5] Topology identification for a class of complex dynamical networks using output variables
Fan Chun-Xia,Wan You-Hong,Jiang Guo-Ping. Chin. Phys. B, 2012, 21(2): 020510.
[6] Impulsive synchronization of two coupled complex networks with time-delayed dynamical nodes
Wang Shu-Guo, Yao Hong-Xing. Chin. Phys. B, 2011, 20(9): 090513.
[7] Robust H observer-based control for synchronization of a class of complex dynamical networks
Zheng Hai-Qing, Jing Yuan-Wei. Chin. Phys. B, 2011, 20(6): 060504.
[8] Fault diagnosis of time-delay complex dynamical networks using output signals
Liu Hao, Song Yu-Rong, Fan Chun-Xia, Jiang Guo-Ping. Chin. Phys. B, 2010, 19(7): 070508.
[9] Projective synchronisation with non-delayed and delayed coupling in complex networks consisting of identical nodes and different nodes
Du Rui-Jin, Dong Gao-Gao, Tian Li-Xin, Zheng Song, Sun Mei. Chin. Phys. B, 2010, 19(7): 070509.
[10] Pinning control of complex Lur'e networks
Zhang Qing-Zhen, Li Zhong-Kui. Chin. Phys. B, 2009, 18(6): 2176-2183.
[11] Disturbance rejection and H pinning control of linear complex dynamical networks
Li Zhong-Kui, Duan Zhi-Sheng, Chen Guan-Rong. Chin. Phys. B, 2009, 18(12): 5228-5234.
[12] Cost and effect of pinning control for network synchronization
Li Rong, Duan Zhi-Sheng, Chen Guan-Rong. Chin. Phys. B, 2009, 18(1): 106-118.
[13] Adaptive projective synchronization with different scaling factors in networks
Xu Zhen-Yuan, Guo Liu-Xiao, Hu Man-Feng. Chin. Phys. B, 2008, 17(11): 4067-4072.
[14] Complete synchronization of uncertain chaotic dynamical network via a simple adaptive control
Xiao Yu-Zhu, Xu Wei, Li Xiu-Chun, Tang Su-Fang. Chin. Phys. B, 2008, 17(1): 80-86.
No Suggested Reading articles found!