Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(6): 060303    DOI: 10.1088/1674-1056/28/6/060303
GENERAL Prev   Next  

Steady-state entanglement and heat current of two coupled qubits in two baths without rotating wave approximation

Mei-Jiao Wang(王美姣)1,2, Yun-Jie Xia(夏云杰)1,2
1 College of Physics and Engineering, Qufu Normal University, Qufu 273165, China;
2 Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Qufu 273165, China
Abstract  We study the steady-state entanglement and heat current of two coupled qubits, in which two qubits are connected with two independent heat baths (IHBs) or two common heat baths (CHBs). We construct the master equation in the eigenstate representation of two coupled qubits to describe the dynamics of the total system and derive the solutions in the steady-state with stronger coupling regime between two qubits than qubit-baths. We do not make the rotating wave approximation (RWA) for the qubit-qubit interaction, and so we are able to investigate the behaviors of the system in both the strong coupling regime and the weak coupling regime, respectively. In an equilibrium bath, we find that the entanglement decreases with the bath temperature and energy detuning increasing under the strong coupling regime. In the weak coupling regime, the entanglement increases with coupling strength increasing and decreases with the bath temperature and energy detuning increasing. In a nonequilibrium bath, the entanglement without RWA is useful for entanglement at lower temperatures. We also study the heat currents of the two coupled qubits and their variations with the energy detuning, coupling strength and low temperature. In the strong (weak) coupling regime, the heat current increases (decreases) with coupling strength increasing when the temperature of one bath is lower (higher) than the other, and the energy detuning leads to a positive (negative) effect when the temperature is low (high). In the weak coupling regime, the variation trend of heat current is opposite to that of coupling strength for the IHB case and the CHB case.
Keywords:  steady-state entanglement      equilibrium and nonequilibrium baths      heat current      rotating wave approximation  
Received:  21 January 2019      Revised:  11 March 2019      Accepted manuscript online: 
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  05.30.-d (Quantum statistical mechanics)  
  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61675115 and 11704221).
Corresponding Authors:  Yun-Jie Xia     E-mail:  yjxia@qfnu.edu.cn

Cite this article: 

Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰) Steady-state entanglement and heat current of two coupled qubits in two baths without rotating wave approximation 2019 Chin. Phys. B 28 060303

[1] Horodedecki R, Horodedecki P, Horodedecki M and Horodedecki K 2009 Rev. Mod. Phys. 81 865
[2] Zyczkowski K, Horodedecki P, Horodedecki M and Horodedecki R 2001 Phys. Rev. A 65 012101
[3] Nielsen M and Chuang I 2000 Quantum Information and Computation (Cambridge: Cambridge University Press) pp. 12-15
[4] Zurek W H 2003 Rev. Mod. Phys. 75 715
[5] Zhang L, Yan Y, Wu C Q, Wang J S and Li B 2009 Phys. Rev. B 80 172301
[6] Zhang L, Wang J S and Li B 2010 Phys. Rev. B 81 100301(R)
[7] Werlang T, Marchiori M A, Cornelio M F and Valente D 2014 Phys. Rev. E 89 062109
[8] Man Z X, An N B and Xia Y J 2016 Phys. Rev. E 94 042135
[9] Shen H Z, Zhou Y H and Yi X X 2014 Phys. Rev. A 90 023849
[10] Ordonez-Miranda J, Ezzahri Y and Joulain K 2017 Phys. Rev. E 95 022128
[11] Li B, Wang L and Casati G 2004 Phys. Rev. Lett. 93 184301
[12] Joulain K, Drevillon J, Ezzahri Y and Ordonez-Miranda J 2016 Phys. Rev. Lett. 116 200601
[13] Linden N, Popescu S and Skrzypczyk P 2010 Phys. Rev. Lett. 105 130401
[14] Brunner N, Linden N, Popescu S and Skrzypczyk P 2012 Phys. Rev. E 85 051117
[15] Mitchison M T, Woods M P, Prior J and Huber M 2015 New J. Phys. 17 115013
[16] Yu C S and Zhu Q Y 2014 Phys. Rev. E 90 052142
[17] Man Z X and Xia Y J 2017 Phys. Rev. E 96 012122
[18] Brask J B and Brunner N 2015 Phys. Rev. E 92 062101
[19] Zagoskin A M, Savel'ev S, Nori F and Kusmartsev F V 2012 Phys. Rev. B 86 014501
[20] Long R and Liu W 2015 Phys. Rev. E 91 062137
[21] Zhao L M and Zhang G F 2017 Quantum Inf. Process. 16 216
[22] Louisell W H and Walker L R 1965 Phys. Rev. 137 B204
[23] Wall D F and Milbum G J 1985 Phys. Rev. A 31 2403
[24] Liao J Q, Huang J F and Kuang L M 2011 Phys. Rev. A 83 052110
[25] Huangfu Y and Jing J 2018 Sci. China-Phys. Mech. Astron. 61 010311
[26] Hu L Z, Man Z X and Xia Y J 2018 Quantum Inf. Process. 17 45
[27] Wang C and Chen Q H 2013 New J. Phys. 15 103020
[28] Man Z X, Xia Y J and An N B 2011 J. Phys. B: At. Mol. Opt. Phys. 44 9
[29] Deng W and Deng Y 2018 Phys. A 512 693
[30] Yang Y, Wang A M, Cao L Z, Zhao J and Lu H X 2018 Chin. Phys. B 27 090302
[31] Gao D Y, Gao Q and Xia Y J 2018 Chin. Phys. B 27 060304
[32] Decordi G L and Vidiella-Barranco A 2017 Opt. Commun. 387 366
[33] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[34] Yu T, Eberly J H 2007 Quantum Inf. Comput. 7 459
[1] Quantum entanglement dynamics based oncomposite quantum collision model
Xiao-Ming Li(李晓明), Yong-Xu Chen(陈勇旭), Yun-Jie Xia(夏云杰), Qi Zhang(张琦), Zhong-Xiao Man(满忠晓). Chin. Phys. B, 2020, 29(6): 060302.
[2] Dissipative generation for steady-state entanglement of two transmons in circuit QED
Shuang He(何爽), Dan Liu(刘丹), Ming-Hao Li(李明浩). Chin. Phys. B, 2019, 28(8): 080303.
[3] Engineering steady-state entanglement for two atoms held in separate cavities through laser cooling
Shen Li-Tuo (沈利托), Chen Rong-Xin (陈荣鑫), Wu Huai-Zhi (吴怀志), Yang Zhen-Biao (杨贞标). Chin. Phys. B, 2014, 23(4): 040303.
[4] Comparison between non-Markovian dynamics with and without rotating wave approximation
Tang Ning (唐宁), Xu Tian-Tian (徐甜甜), Zeng Hao-Sheng (曾浩生). Chin. Phys. B, 2013, 22(3): 030304.
[5] Entanglement of two atoms interacting with a dissipative coherent cavity field without rotating wave approximation
Kang Guo-Dong(康国栋), Fang Mao-Fa(方卯发), Ouyang Xi-Cheng(欧阳锡城), and Deng Xiao-Juan(邓小娟). Chin. Phys. B, 2010, 19(11): 110303.
No Suggested Reading articles found!