Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(5): 053401    DOI: 10.1088/1674-1056/28/5/053401
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Isotope effect and Coriolis coupling effect forthe Li + H(D)Cl→LiCl + H(D) reaction

Hongsheng Zhai(翟红生)1,2, Guanglei Liang(梁广雷)1,2, Junxia Ding(丁俊霞)3, Yufang Liu(刘玉芳)1,2
1 College of Physics and Materials Science, Henan Normal University, Xinxiang 453007, China;
2 Spectral Measurement and Application of Infrared Material Key Laboratory of Henan Province, Academy of Physics and Materials Science, Henan Normal University, Xinxiang 453007, China;
3 State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
Abstract  

A time-dependent quantum wave packet method is used to investigate the dynamics of the Li+ H(D)Cl reaction based on a new potential energy surface (J. Chem. Phys. 146 164305 (2017)). The reaction probabilities of the Coriolis coupled (CC) and centrifugal sudden (CS) calculations, the integral cross sections, the reaction rate constants are obtained. The rate constants of the Li+ HCl reaction are within the error bounds at low temperature. A comparison of the CC and CS results reveals that the Coriolis coupling plays an important role in the Li+ H(D)Cl reaction. The CC cross sections are larger than the CS results within the entire energy range, demonstrating that the Coriolis coupling effect can more effectively promote the Li+ DCl reaction than the Li+ HCl reaction. It is found that the isotope effect has a great influence on the title reaction.

Keywords:  isotope effect      Coriolis coupling      rate constant      quantum wave packet  
Received:  14 January 2019      Revised:  12 March 2019      Accepted manuscript online: 
PACS:  34.20.-b (Interatomic and intermolecular potentials and forces, potential energy surfaces for collisions)  
  82.20.Ej (Quantum theory of reaction cross section)  
  82.20.Pm (Rate constants, reaction cross sections, and activation energies)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11274096 and 11604083).

Corresponding Authors:  Hongsheng Zhai, Yufang Liu     E-mail:  hszhai@htu.cn;yf-liu@htu.cn

Cite this article: 

Hongsheng Zhai(翟红生), Guanglei Liang(梁广雷), Junxia Ding(丁俊霞), Yufang Liu(刘玉芳) Isotope effect and Coriolis coupling effect forthe Li + H(D)Cl→LiCl + H(D) reaction 2019 Chin. Phys. B 28 053401

[1] Helbing R K B and Rothe E W 1968 J. Chem. Phys. 48 3945
[2] Becker C H, Casavecchia P and Lee Y T 1980 J. Chem. Phys. 73 2833
[3] Plane J M C and Saltzman E S 1987 J. Chem. Phys. 87 4606
[4] Shapiro M and Zeiri Y 1979 J. Chem. Phys. 70 5264
[5] Aguilar A, Gervasi O and Lagana A 1991 Theor. Chim. Acta 79 191
[6] Shapiro M and Zeiri Y 1986 J. Chem. Phys. 85 6449
[7] Garcia E, Lagana A and Palmieri P 1986 Chem. Phys. Lett. 127 73
[8] Lagana A, Palmieri P, Alvarino J M and Garcia E 1990 J. Chem. Phys. 93 8764
[9] Palmieri P, Garcia E and Lagana A 1988 J. Chem. Phys. 88 181
[10] Garcia E, Jambrina P G and Lagana A 2017 J. Phys. Chem. A 121 6349
[11] Ciccarelli L, Garcia E and Lagana A 1985 Chem. Phys. Lett. 120 75
[12] Kasai P H 2000 J. Phys. Chem. A 104 4514
[13] Wang Y H, Xiao C Y, Deng K M and Lu R F 2014 Chin. Phys. B 23 043401
[14] Yue X F 2012 Chin. Phys. B 21 073401
[15] Yao C X and Zhao G J 2013 Chin. Phys. B 22 083403
[16] He D, Yuan J C, Li H X and Chen M D 2016 J. Phys. Chem. 145 234312
[17] Tan R S, Zhai H C and Lin S Y 2017 J. Chem. Phys. 146 164305
[18] Yarkony D R 1987 Int. J. Quantum Chem. 31 91
[19] McGuire P 1973 Chem. Phys. Lett. 23 575
[20] McGuire P and Kouri D J 1974 J. Chem. Phys. 60 248
[21] Pack R T 1974 J. Chem. Phys. 60 633
[22] Kouri D J, Heil T G and Shimoni Y 1976 J. Chem. Phys. 65 226
[23] Yao L, Ju L P, Chu T S and Han K L 2006 Phys. Rev. A 74 062715
[24] Chu T S, Han K L and Balint-Kurti G G 2007 J. Chem. Phys. 126 214303
[25] Chu T S, Han K L, Xu H F and Ng C Y 2005 J. Chem. Phys. 122 244322
[26] Chu T S and Han K L 2008 Phys. Chem. Chem. Phys. 10 2431
[27] Zhang J Z H, Dai J Q and Zhu W 1997 J. Phys. Chem. A 101 2746
[28] Chu T S, Zhang Y and Han K L 2006 Int. Rev. Phys. Chem. 25 201
[29] Xie T X, Zhao M Y and Han K L 2003 Phys. Chem. Chem. Phys. 5 2034
[30] Plance J M C, Rajasekhar B and Bartolotti L 1989 J. Chem. Phys. 91 6177
[31] Chu T S and Han K L 2005 J. Phys. Chem. A 109 2050
[32] Zhang Y, Han K L and Zhang J Z H 2003 J. Chem. Phys. 119 12921
[1] A new global potential energy surface of the ground state of SiH2+ (X2A1) system and dynamics calculations of the Si+ + H2 (v0 = 2, j0 = 0) → SiH+ + H reaction
Yong Zhang(张勇), Xiugang Guo(郭秀刚), and Haigang Yang(杨海刚). Chin. Phys. B, 2022, 31(11): 113101.
[2] Exact quantum dynamics study of the H(2S)+SiH+(X1Σ+) reaction on a new potential energy surface of SiH2+(X2A1)
Wen-Li Zhao(赵文丽), Rui-Shan Tan(谭瑞山), Xue-Cheng Cao(曹学成), Feng Gao(高峰), and Qing-Tian Meng(孟庆田). Chin. Phys. B, 2021, 30(12): 123403.
[3] Exploring the methane combustion reaction: A theoretical contribution
Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师). Chin. Phys. B, 2018, 27(2): 023401.
[4] Theoretical study of the radiative decay processes in H+(D+, T+)-Be collisions
Huilin Wei(魏惠琳), Xiaojun Liu(刘晓军). Chin. Phys. B, 2018, 27(12): 123101.
[5] Laser phase effect on asymmetric harmonic distribution in H2+
Li-Qiang Feng(冯立强), Wen-Liang Li(李文亮), Hui Liu(刘辉). Chin. Phys. B, 2017, 26(4): 044206.
[6] State-to-state quantum dynamics of N(2D)+HD (v=0, j=0) reaction
Yong Zhang(张勇). Chin. Phys. B, 2016, 25(12): 123104.
[7] Stereodynamics of the reactions: F+H2/HD/HT→FH+H/D/T
Chi Xiao-Lin (迟晓琳), Zhao Jin-Feng (赵金峰), Zhang Yong-Jia (张永嘉), Ma Feng-Cai (马凤才), Li Yong-Qing (李永庆). Chin. Phys. B, 2015, 24(5): 053401.
[8] Theoretical prediction of energy dependence for D+BrO→DBr+O reaction: The rate constant and product rotational polarization
Zhang Ying-Ying (张莹莹), Xie Ting-Xian (解廷献), Li Ze-Rui (李泽瑞), Shi Ying (石英), Jin Ming-Xing (金明星). Chin. Phys. B, 2015, 24(3): 038201.
[9] Quasi-classical trajectory study of the isotope effect on the stereodynamics in the reaction H(2S)+CH(X2Π; v=0, j=1)→C(1D)+H2(X1Σg+)
Wang Yun-Hui (王允辉), Xiao Chuan-Yun (肖传云), Deng Kai-Ming (邓开明), Lu Rui-Feng (陆瑞锋). Chin. Phys. B, 2014, 23(4): 043401.
[10] Stereodynamics in reaction O(1D)+CH4→OH+CH3
Sha Guang-Yan (沙广燕), Yuan Jiu-Chuang (袁久闯), Meng Chang-Gong (孟长功), Chen Mao-Du (陈茂笃). Chin. Phys. B, 2014, 23(1): 018202.
[11] Stereodynamics study of the exchange reaction O(3P) + CH4→H + OCH3
Cheng Da-Hai (程大海), Yuan Jiu-Chuang (袁久闯), Yang Tian-Gang (杨天罡), Chen Mao-Du (陈茂笃). Chin. Phys. B, 2013, 22(6): 068202.
[12] Isotope effect on the stereodynamics for the collision reaction H+LiF(v = 0, j = 0)→ HF+Li
Yue Xian-Fang (岳现房 ). Chin. Phys. B, 2012, 21(7): 073401.
[13] Theoretical study of stereodynamics for the reaction O(3P) +D2 (v=0, j=0) $\to$ OD+D and isotope effect
Xu Zeng-Hui(许增慧) and Zong Fu-Jian(宗福建). Chin. Phys. B, 2011, 20(6): 063104.
[14] Hydrogenation, structure and magnetic properties of La(Fe0.91Si0.09)13 hydrides and deuterides
Wang Zhi-Cui(王志翠), He Lun-Hua(何伦华), F. Cuevas, M. Latroche, Shen Jun(沈俊), and Wang Fang-Wei(王芳卫). Chin. Phys. B, 2011, 20(6): 067502.
[15] MRCI study of spectroscopic and molecular properties of X1$\varSigma$g+ and A1$\varPi$u electronic states of the C2 radical
Zhang Xiao-Niu(张小妞), Shi De-Heng(施德恒), Sun Jin-Feng(孙金锋), and Zhu Zun-Lue(朱遵略) . Chin. Phys. B, 2011, 20(4): 043105.
No Suggested Reading articles found!