Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(3): 037501    DOI: 10.1088/1674-1056/28/3/037501
Special Issue: Virtual Special Topic — Magnetism and Magnetic Materials
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Antiferromagnetic interlayer coupling of (111)-oriented La0.67Sr0.33MnO3/SrRuO3 superlattices

Hui Zhang(张慧)1,2, Jing Zhang(张静)1,2, Jin-E Zhang(张金娥)1,2, Fu-Rong Han(韩福荣)1,2, Hai-Lin Huang(黄海林)1,2, Jing-Hua Song(宋京华)1,2, Bao-Gen Shen(沈保根)1,2, Ji-Rong Sun(孙继荣)1,2
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

We report a strong antiferromagnetic (AFM) interlayer coupling in ferromagnetic La0.67Sr0.33MnO3/SrRuO3 (LSMO/SRO) superlattices grown on (111)-oriented SrTiO3 substrate. Unlike the (001) superlattices for which the spin alignment between LSMO and SRO is antiparallel in the in-plane direction and parallel in the out-of-plane direction, the antiparallel alignment is observed along both the in-plane and out-of-plane directions in the present sample. The low temperature hysteresis loop demonstrates two-step magnetic processes, indicating the coexistence of magnetically soft and hard components. Moreover, an inverted hysteresis loop was observed. Exchange bias tuned by the temperature and cooling field was also investigated, and positive as well as negative exchange bias was observed at the same temperature with the variation of the cooling field. A very large exchange field (HEB) was observed and both magnitude and sign of the HEB depend on the cooling field, which can be attributed to an interplay of Zeeman energy and AFM coupling energy at the interfaces. The present work shows the great potential of tuning a spin texture through interfacial engineering for the complex oxides whose spin state is jointly determined by strongly competing mechanisms.

Keywords:  transition metal oxide      interlayer coupling      exchange bias  
Received:  27 November 2018      Revised:  25 December 2018      Published:  05 March 2019
PACS:  75.47.Lx (Magnetic oxides)  
  75.70.Cn (Magnetic properties of interfaces (multilayers, superlattices, heterostructures))  
  75.25.-j (Spin arrangements in magnetically ordered materials (including neutron And spin-polarized electron studies, synchrotron-source x-ray scattering, etc.))  
Fund: 

Project supported by the National Basic Research Program of China (Grant Nos. 2016YFA0300701, 2017YFA0206300, and 2017YFA0303601) and the National Natural Science Foundation of China (Grant Nos. 11520101002, 51590880, and 11674378).

Corresponding Authors:  Ji-Rong Sun     E-mail:  jrsun@iphy.ac.cn

Cite this article: 

Hui Zhang(张慧), Jing Zhang(张静), Jin-E Zhang(张金娥), Fu-Rong Han(韩福荣), Hai-Lin Huang(黄海林), Jing-Hua Song(宋京华), Bao-Gen Shen(沈保根), Ji-Rong Sun(孙继荣) Antiferromagnetic interlayer coupling of (111)-oriented La0.67Sr0.33MnO3/SrRuO3 superlattices 2019 Chin. Phys. B 28 037501

[1] Ohtomo A and Hwang H Y 2004 Nature 427 423
[2] Nakagawa N, Hwang H Y and Muller D A 2006 Nat. Mater. 5 204
[3] Herranz G, Basletic M, Bibes M, Carretero C, Tafra E, Jacquet E, Bouzehouane K, Deranlot C, Hamzic A, Broto J M, Barthelemy A and Fert A 2007 Phys. Rev. Lett. 98 216803
[4] Ueda K, Tabata H and Kawai T 1998 Science 280 1064
[5] Gibert M, Zubko P, Scherwitzl R, Iniguez J and Triscone J M 2012 Nat. Mater. 11 195
[6] Sadoc A, Mercey B, Simon C, Grebille D, Prellier W and Lepetit M B 2010 Phys. Rev. Lett. 104 046804
[7] Lu W, Song W, Yang P, Ding J, Chow G M and Chen J 2015 Sci. Rep. 5 10245
[8] Chen Y Z, Trier F, Wijnands T, Green R J, Gauquelin N, Egoavil R, Christensen D V, Koster G, Huijben M, Bovet N, Macke S, He F, Sutarto R, Andersen N H, Sulpizio J A, Honig M, Prawiroatmodjo G E D K, Jespersen T S, Linderoth S, Ilani S, Verbeeck J, Van Tendeloo G, Rijnders G, Sawatzky G A and Pryds N 2015 Nat. Mater. 14 801
[9] Liao Z, Huijben M, Zhong Z, Gauquelin N, Macke S, Green R J, Van Aert S, Verbeeck J, Van Tendeloo G, Held K, Sawatzky G A, Koster G and Rijnders G 2016 Nat. Mater. 15 425
[10] Kan D, Aso R, Sato R, Haruta M, Kurata H and Shimakawa Y 2016 Nat. Mater. 15 432
[11] Zhang J, Zhang H, Zhang X, Guan X, Shen X, Hong D, Zhang H, Liu B, Yu R, Shen B and Sun J 2017 Nanoscale 9 3476
[12] Zhang J, Zhong Z, Guan X, Shen X, Zhang J, Han F, Zhang H, Zhang H, Yan X, Zhang Q, Gu L, Hu F, Yu R, Shen B and Sun J 2018 Nat. Commun. 9 1923
[13] Ke X, Rzchowski M S, Belenky L J and Eom C B 2004 Appl. Phys. Lett. 84 5458
[14] Ke X, Belenky L J, Eom C B and Rzchowski M S 2005 J. Appl. Phys. 97 10K115
[15] Ziese M, Vrejoiu I, Pippel E, Esquinazi P, Hesse D, Etz C, Henk J, Ernst A, Maznichenko I V, Hergert W and Mertig I 2010 Phys. Rev. Lett. 104 167203
[16] Ziese M, Vrejoiu I and Hesse D 2010 Appl. Phys. Lett. 97 052504
[17] Thota S, Zhang Q, Guillou F, Lueders U, Barrier N, Prellier W, Wahl A and Padhan P 2010 Appl. Phys. Lett. 97 112506
[18] Padhan P and Prellier W 2011 Appl. Phys. Lett. 99 263108
[19] Nakamura M, Ogimoto Y, Tamaru H, Izumi M and Miyano K 2005 Appl. Phys. Lett. 86 182504
[20] Wakabayashi Y, Bizen D, Nakao H, Murakami Y, Nakamura M, Ogimoto Y, Miyano K and Sawa H 2006 Phys. Rev. Lett. 96 017202
[21] Grutter A, Wong F, Arenholz E, Liberati M, Vailionis A and Suzuki Y 2010 Appl. Phys. Lett. 96 082509
[22] Behera B C, Padhan P and Prellier W 2016 J. Phys.: Condens. Matter 28 196004
[23] Urushibara A, Moritomo Y, Arima T, Asamitsu A, Kido G and Tokura Y 1995 Phys. Rev. B 51 14103
[24] Moritomo Y, Asamitsu A and Tokura Y 1995 Phys. Rev. B 51 16491
[1] Electrostatic switch of magnetic core-shell in 0-3 type LSMO/PZT composite film
Bo Chen(陈波), Zi-Run Li(李滋润), Chuan-Fu Huang(黄传甫), Yong-Mei Zhang(张永梅). Chin. Phys. B, 2020, 29(9): 097702.
[2] Room-temperature electric control of exchange bias effect in CoO1-δ/Co films using Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (110) substrates
Xin Wen(闻馨), Rui Wu(吴锐), Wen-Yun Yang(杨文云), Chang-Sheng Wang(王常生), Shun-Quan Liu(刘顺荃), Jing-Zhi Han(韩景智), Jin-Bo Yang(杨金波). Chin. Phys. B, 2020, 29(9): 098503.
[3] Spin glassy behavior and large exchange bias effect in cubic perovskite Ba0.8Sr0.2FeO3-δ
Yu-Xuan Liu(刘宇轩), Zhe-Hong Liu(刘哲宏), Xu-Bin Ye(叶旭斌), Xu-Dong Shen(申旭东), Xiao Wang(王潇), Bo-Wen Zhou(周博文), Guang-Hui Zhou(周光辉), You-Wen Long(龙有文). Chin. Phys. B, 2019, 28(6): 068104.
[4] Emerging properties of two-dimensional twisted bilayer materials
Yang Cheng(程阳), Chen Huang(黄琛), Hao Hong(洪浩), Zixun Zhao(赵子荀), Kaihui Liu(刘开辉). Chin. Phys. B, 2019, 28(10): 107304.
[5] Investigation of magnetization reversal process in pinned CoFeB thin film by in-situ Lorentz TEM
Ke Pei(裴科), Wei-Xing Xia(夏卫星), Bao-Min Wang(王保敏), Xing-Cheng Wen(文兴成), Ping Sheng(盛萍), Jia-Ping Liu(刘家平), Xin-Cai Liu(刘新才), Run-Wei Li(李润伟). Chin. Phys. B, 2018, 27(4): 047502.
[6] Magnetoresistance and exchange bias in high Mn content melt-spun Mn46Ni42Sn11Sb1 alloy ribbon
Qingxue Huang(黄庆学), Fenghua Chen(陈峰华), Mingang Zhang(张敏刚), Xiaohong Xu(许小红). Chin. Phys. B, 2016, 25(5): 057305.
[7] Size-dependent exchange bias in single phase Mn3O4 nanoparticles
Song-Wei Wang(王松伟), Xin Zhang(张鑫), Rong Yao(姚蓉), Guang-Hui Rao(饶光辉). Chin. Phys. B, 2016, 25(11): 117502.
[8] Model of hybrid interfacial domain wall in ferromagnetic/antiferromagnetic bilayers
Zhang Wen, Zhai Ya, Lu Mu, You Biao, Zhai Hong-Ru, Caroline G Morgan. Chin. Phys. B, 2015, 24(4): 047502.
[9] High coercivity in large exchange-bias Co/CoO-MgO nano-granular films
Ge Chuan-Nan, Wan Xian-Gang, Eric Pellegrin, Hu Zhi-Wei, Wen-I Liang, Michael Bruns, Zou Wen-Qin, Du You-Wei. Chin. Phys. B, 2015, 24(3): 034501.
[10] Multiferroic properties and exchange bias in Bi1-xSrxFeO3 (x=0-0.6) ceramics
Ma Zheng-Zheng, Li Jian-Qing, Chen Zi-Peng, Tian Zhao-Ming, Hu Xiao-Jun, Huang Hai-Jun. Chin. Phys. B, 2014, 23(9): 097505.
[11] Types of the jump phenomenon in the angular dependence of the noncollinear exchange bias
Yang Hong-Ping, Bai Yu-Hao. Chin. Phys. B, 2014, 23(6): 067503.
[12] Exchange bias in ferromagnet/antiferromagnet bilayers
Shi Zhong, Du Jun, Zhou Shi-Ming. Chin. Phys. B, 2014, 23(2): 027503.
[13] Multiple sign reversals of the exchange bias field in polycrystalline SmCr0.9Fe0.1O3
Fang Yong, Yan Shi-Ming, Gong Yuan-Yuan, Zhu Wei-Li, Cao Qing-Qi, Wang Dun-Hui, Du You-Wei. Chin. Phys. B, 2014, 23(12): 127502.
[14] Asymmetric exchange bias training effect in spin glass (FeAu)/FeNi bilayers
Rui Wen-Bin, He Mao-Cheng, You Biao, Shi Zhong, Zhou Shi-Ming, Xiao Ming-Wen, Gao Yuan, Zhang Wei, Sun Li, Du Jun. Chin. Phys. B, 2014, 23(10): 107502.
[15] Martensitic transformation & related magnetic effects in Ni-Mn-based ferro magnetic shape memory alloys
Wang Dun-Hui, Han Zhi-Da, Xuan Hai-Cheng, Ma Sheng-Can, Chen Shui-Yuan, Zhang Cheng-Liang, Du You-Wei. Chin. Phys. B, 2013, 22(7): 077506.
No Suggested Reading articles found!