Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 094221    DOI: 10.1088/1674-1056/27/9/094221

Pressure dependent modulation instability in photonic crystal fiber filled with argon gas

He-Lin Wang(王河林)1,2, Ai-Jun Yang(杨爱军)2, XiaoLong Wang(王肖隆)1, Bin Wu(吴彬)1, Yi Ruan(阮乂)1
1 Center for Optics & Optoelectronics Research, Zhejiang University of Technology, Hangzhou 310023, China;
2 College of Science, Zhejiang University of Technology, Hangzhou 310023, China

By using the designed photonic crystal fiber filled with argon gas, the effect of gas pressure on modulation instability (MI) gain is analyzed in detail. The MI gain bandwidth increases gradually as the argon gas pressure rises from 1P0 to 400P0 (P0 is one standard atmosphere), while its gain amplitude slightly decreases. Moreover, the increase of the incident light power also results in the increase of MI gain bandwidth in the Stokes or anti-Stokes region when the incident power increases from 1 W to 200 W. Making use of the optimal parameters including the higher argon gas pressure (400P0) and the incident light power (200 W), we finally obtain a 100 nm broadband MI gain. These results indicate that controlling the MI gain characteristic by changing the argon gas pressure in PCF is an effective way when the incident light source is not easy to satisfy the requirement of practical application. This method of controlling MI gain can be used in optical communication and laser shaping.

Keywords:  modulation instability      gas pressure      light power. broadband gain  
Received:  12 March 2018      Revised:  17 May 2018      Published:  05 September 2018
PACS:  42.65.-k (Nonlinear optics)  
  42.81.-i (Fiber optics)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.60.Fc (Modulation, tuning, and mode locking)  

Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. LY15F050010) and the National Natural Science Foundation of China (Grant Nos. 11604296, 11404286, and 61727821).

Corresponding Authors:  He-Lin Wang, Ai-Jun Yang     E-mail:;

Cite this article: 

He-Lin Wang(王河林), Ai-Jun Yang(杨爱军), XiaoLong Wang(王肖隆), Bin Wu(吴彬), Yi Ruan(阮乂) Pressure dependent modulation instability in photonic crystal fiber filled with argon gas 2018 Chin. Phys. B 27 094221

[1] Agrawal G 2013 Nonlinear Fiber Optics (5th Edn.) (New York:Academic Press)
[2] Golovchenko E A and Pilipetskii A N 1994 J. Opt. Soc. Am. B 11 92
[3] Abdullaev F K, Darmanyan S A, Kobyakov A and Lederer F 1996 Phys. Lett. A 220 213
[4] Hong W P 2002 Opt. Commun. 213 173
[5] Palacios S L and Fernandez-Diaz J M 2000 Opt. Commun. 178 57
[6] Ylvestre T S, Coen S, Emplit P, et. al. 2002 Opt. Lett. 27 482
[7] Roy S and Chaudhuri P R 2009 Opt. Commun. 282 3448
[8] Wang H, Yang A and Leng Y 2014 Laser Phys. 24 035101
[9] Wang H, Yang A and Leng Y 2013 Laser Phys. 23 075102
[10] Wang H, Yang A and Leng Y 2013 Chin. Phys. B 22 074208
[11] Kudlinski A, Bendahmane A, Labat D, Virally S, Murray R T, Kelleher E J R and Mussot A 2013 Opt. Express 21 8437
[12] Azhar M, Wong G K L, Chang W, Joly N Y and Russell P St J 2013 Opt. Express 21 4405
[13] Wang H L, Leng Y X and Xu Z Z 2009 Chin. Phys. B 18 05375
[14] Zhang J, Lu Z H and Wang L J 2008 Appl. Opt. 47 3143
[15] Peak E R and Fisher D J 1964 J. Opt. Soc. Am. 54 1362
[1] Controllable optical superregular breathers in the femtosecond regime
Yang Ren(任杨), Zhan-Ying Yang(杨战营), Chong Liu(刘冲), Wen-Li Yang(杨文力). Chin. Phys. B, 2018, 27(1): 010504.
[2] Optical pulse evolution in the presence of a probe light in CW-pumped nonlinear fiber
Wei Chen(陈伟), Xue-Liang Zhang(张学亮), Xiao-Yang Hu(胡晓阳), Zhang-Qi Song(宋章启), Zhou Meng(孟洲). Chin. Phys. B, 2017, 26(6): 064206.
[3] Effects of gas pressure on plasma characteristics in dual frequency argon capacitive glow discharges at low pressure by a self-consistent fluid model
Lu-Lu Zhao(赵璐璐), Yue Liu(刘悦), Tagra Samir. Chin. Phys. B, 2017, 26(12): 125201.
[4] Ultra-broadband modulation instability gain characteristics in As2S3 and As2Se3 chalcogenide glass photonic crystal fiber
He-Lin Wang(王河林), Bin Wu(吴彬), Xiao-Long Wang(王肖隆). Chin. Phys. B, 2016, 25(6): 064207.
[5] Modulation instabilities in randomly birefringent two-mode optical fibers
Jin-Hua Li(李金花), Hai-Dong Ren(任海东), Shi-Xin Pei(裴世鑫), Zhao-Lou Cao(曹兆楼), Feng-Lin Xian(咸冯林). Chin. Phys. B, 2016, 25(12): 124208.
[6] Picosecond supercontinuum generation seeded by a weak continuous wave
Li Ying, Hou Jing, Leng Jin-Yong, Wang Wen-Liang, Jiang Zong-Fu. Chin. Phys. B, 2013, 22(7): 074205.
[7] Broadband tunable optical amplification based on modulation instability characteristic of high-birefringence photonic crystal fibers
Wang He-Lin, Yang Ai-Jun, Leng Yu-Xin. Chin. Phys. B, 2013, 22(7): 074208.
[8] Impacts of higher-order dispersions and saturable nonlinearities on modulation instability in negative-refractive metamaterials
Zhong Xian-Qiong, Cheng Ke, Xiang An-Ping. Chin. Phys. B, 2013, 22(3): 034205.
[9] Analysis of influence of RF power and buffer gas pressure on sensitivity of optically pumped cesium magnetometer
Shi Rong-Ye, Wang Yan-Hui. Chin. Phys. B, 2013, 22(10): 100703.
[10] Phase-matching analysis of four-wave mixing induced by modulation instability in a single-mode fiber
Chen Wei, Meng Zhou, Zhou Hui-Juan. Chin. Phys. B, 2012, 21(9): 094215.
[11] Cross-phase modulation instability in optical fibres with exponential saturable nonlinearity and high-order dispersion
Zhong Xian-Qiong, Xiang An-Ping. Chin. Phys. B, 2010, 19(6): 064212.
[12] Optimization control of modulation-instability gain in photonic crystal fibres with two-zero dispersion wavelengths
Wang He-Lin, Leng Yu-Xin, Xu Zhi-Zhan. Chin. Phys. B, 2009, 18(12): 5375-5384.
[13] Density cavities generated by plasma--field interactions in the far wake region of a space vehicle
Hu Tao-Ping, Luo Qing, Li Xiao-Qing. Chin. Phys. B, 2007, 16(8): 2449-2454.
[14] Laser pulse modulation instabilities in partially stripped plasma
Hu Qiang-Lin, Liu Shi-Bing, Jiang Yi-Jian. Chin. Phys. B, 2005, 14(12): 2546-2551.
[15] Modulation instability of quasi-plane-wave optical beams in biased photorefractive-photovoltaic crystals
Zhang Yan-Peng, Lu Ke-Qing, Zhao Wei, Yang Yan-Long, Zhu Xiang-Ping, Li Jin-Ping. Chin. Phys. B, 2004, 13(12): 2077-2081.
No Suggested Reading articles found!