Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 094301    DOI: 10.1088/1674-1056/27/9/094301
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Influence of temperature on the properties of one-dimensional piezoelectric phononic crystals

Ahmed Nagaty, Ahmed Mehaney, Arafa H Aly
Physics Department, Faculty of Sciences, Beni-Suef University, Egypt
Abstract  

The current study investigates the influence of temperature on a one-dimensional piezoelectric phononic crystal using tunable resonant frequencies. Analytical and numerical examples are introduced to emphasize the influence of temperature on the piezoelectric phononic crystals. It was observed that the transmission spectrum of a one-dimensional phononic crystal containing a piezoelectric material (0.7 PMN-0.3PT) can be changed drastically by an increase in temperature. The resonant peak can be shifted toward high or low frequencies by an increase or decrease in temperature, respectively. Therefore, we deduced that temperature can exhibit a large tuning in the phononic band gaps and in the local resonant frequencies depending on the presence of a piezoelectric material. Such result can enhance the harvesting energy from piezoelectric materials, especially those that are confined in a phononic crystal.

Keywords:  phononic crystals      resonant modes      piezoelectric material      thermal properties and temperature  
Received:  04 May 2018      Revised:  28 May 2018      Accepted manuscript online: 
PACS:  43.25.+y (Nonlinear acoustics)  
  42.70.Qs (Photonic bandgap materials)  
  91.60.Lj (Acoustic properties)  
  43.25.+y (Nonlinear acoustics)  
Corresponding Authors:  Arafa H Aly     E-mail:  arafa.hussien@science.bsu.edu

Cite this article: 

Ahmed Nagaty, Ahmed Mehaney, Arafa H Aly Influence of temperature on the properties of one-dimensional piezoelectric phononic crystals 2018 Chin. Phys. B 27 094301

[1] Cheng Y, Liu X J and Wu D J 2011 J. Acoust. Soc. Am. 129 1157
[2] Aly A H and Mehaney A 2012 Physica B 407 4262
[3] Maldovan M and Thomas E L 2008 Periodic Mater. Interference Lithography:For Photon. Phononics Mech. 1st edn. (Wiley-VCH)
[4] Aly A H, Mehaney and El Rahman E A 2013 Int. J. Mod. Phys. B 27 1350047
[5] Khelif A and Adibi A 2016 Phononic Cryst. Fundamentals Appl. 1st edn. (New York:Springer Science and Business Media)
[6] Aly A H and Mehaney A 2017 Ind. J. Phys. 91 1021
[7] Wang T, Sheng M P, Wang H and Qin Q H 2015 Acoust. Aust. 43 275
[8] Aly A H, Nagaty A and Khalifa Z 2017 Int. J. Mod. Phys. B 31 1750147
[9] Aly A H and Mehaney 2015 Int. J. Thermophys. 36 2967
[10] Aly A H, Mehaney A and Eissa M F 2015 J. Appl. Phys. 118 064502
[11] Zhang X, Liu Z Y, Liu Y Y and Wu F G 2003 Phys. Lett. A 313 455
[12] Khelif, Choujaa A, Benchabane, Rouhani B D and Laude V 2005 Europhys. Lett. 71 570
[13] Maznev A A, Lomonosov A M, Hess P and Kolomenskii Al A 2003 Eur. Phys. J. B 35 429
[14] Aly A H, Mehaney A and Hanafey H S 2012 Prog. Electromagnetics Res. Symp. Proceeding March 27-30, 2012 Kuala Lumpu, Malaysi, p. 104
[15] Aly A H, Mehaney A and El-Nagga S A 2017. Supercond. Nov. Mag. 30 2711
[16] Arango S V, Sánchez D B, Torres R, Kyriacou P and Lucklum R 2017 Sensors 17 1960
[17] Aly A H and Mehaney A 2016 Chin. Phys. B 25 114301
[18] Zubtsov M, Lucklum R, Ke M, Oseev A, Grundmann R, Henning B and Hempel U 2012 Sens. Actuat. A 186 118
[19] Wang Y, Song W, Sun E, Zhang R and Cao W 2014 Physica E 60 37
[20] Wilm M, Ballandras S, Laude V and Pastureaud T 2002 J. Acoust. Soc. Am. 112 943
[21] Li F M and Wang Y S 2005 Int. J. Solids Struct. 42 6475
[22] Li F M and Wang Y S 2006 J. Sound Vib. 296 554
[23] Li F M, Xu M Q and Wang Y S 2007 Solid State Commun. 141 296
[24] Pang Y, Liu J X, Wang Y S and Fang D N 2008 Acta Mech. Solida Sin. 21 483
[25] Aly A H, Nagaty A and Khalifa Z 2018 Surf. Rev. Lett. 1850144
[26] Guo X and Wei P 2016 Int. J. Mech. Sci. 106 244
[27] Cao W and Qi W 1995 J. Appl. Phys. 78 14627
[28] Long H, Cheng Y, Zhang T and Liu X 2017 Acoust. So. Am. 142 EL69
[29] Wang Y Z, Li, F M, Kishimoto K, Wang Y S and Huang W H 2010 Arch. Appl. Mech. 80 629
[30] Uchino K 2010 Advanced Piezoelectric Materials Science and Technology (Wood head Publishing)
[31] Wang Y Z, Li F M, Kishimoto K, Wang Y S and Huang W H 2008 Acta Mech. Solida Sin. 21 529
[32] Wang Y Z, Li F M and Wang Y S 2016 Int. J. Mech. Sci. 106 357
[33] Wang Y Z and Wang Y S 2018 Wave Motion 78 1
[34] Aly A H, Nagaty A, Khalifa Z and Mehaney A 2018 J. Appl. Phys. 123 185102
[35] Nagaty A, Mehaney A and Aly A H 2018 J. Supercond. Nov. Magn.
[1] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[2] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[3] Improved reproducing kernel particle method for piezoelectric materials
Ji-Chao Ma(马吉超), Gao-Feng Wei(魏高峰), Dan-Dan Liu(刘丹丹). Chin. Phys. B, 2018, 27(1): 010201.
[4] Acoustic-electromagnetic slow waves in a periodical defective piezoelectric slab
Xiao-juan Li(李小娟), Huan Ge(葛欢), Li Fan(范理), Shu-yi Zhang(张淑仪), Hui Zhang(张辉), Jin Ding(丁劲). Chin. Phys. B, 2017, 26(7): 074302.
[5] Two-dimensional fracture analysis of piezoelectric material based on the scaled boundary node method
Shen-Shen Chen(陈莘莘), Juan Wang(王娟), Qing-Hua Li(李庆华). Chin. Phys. B, 2016, 25(4): 040203.
[6] Investigations of thickness-shear mode elastic constant and damping of shunted piezoelectric materials with a coupling resonator
Ji-Ying Hu(胡吉英), Zhao-Hui Li(李朝晖), Yang Sun(孙阳), Qi-Hu Li(李启虎). Chin. Phys. B, 2016, 25(12): 127701.
[7] Band structures of elastic waves in two-dimensional eight-fold solid-solid quasi-periodic phononic crystals
Chen A-Li (陈阿丽), Liang Tong-Li (梁同利), Wang Yue-Sheng (汪越胜). Chin. Phys. B, 2015, 24(6): 066101.
[8] Interface-guided mode of Lamb waves in a two-dimensional phononic crystal plate
Huang Ping-Ping (黄平平), Yao Yuan-Wei (姚源卫), Wu Fu-Gen (吴福根), Zhang Xin (张欣), Li Jing (李静), Hu Ai-Zhen (胡爱珍). Chin. Phys. B, 2015, 24(5): 054301.
[9] Tuning of band-gap of phononic crystals with initial confining pressure
Feng Rong-Xin (冯荣欣), Liu Kai-Xin (刘凯欣). Chin. Phys. B, 2012, 21(12): 126301.
[10] Coupled flexural-torsional vibration band gap in periodic beam including warping effect
Fang Jian-Yu(方剑宇), Yu Dian-Long(郁殿龙), Han Xiao-Yun(韩小云), and Cai Li(蔡力). Chin. Phys. B, 2009, 18(4): 1316-1321.
[11] Accurate evaluation of lowest band gaps in ternary locally resonant phononic crystals
Wang Gang(王刚), Shao Li-Hui(邵丽晖), Liu Yao-Zong(刘耀宗), and Wen Ji-Hong(温激鸿). Chin. Phys. B, 2006, 15(8): 1843-1848.
[12] Flexural vibration band gaps in thin plates with two-dimensional binary locally resonant structures
Yu Dian-Long (郁殿龙), Wang Gang (王刚), Liu Yao-Zong (刘耀宗), Wen Ji-Hong (温激鸿), Qiu Jing (邱静). Chin. Phys. B, 2006, 15(2): 266-271.
[13] Formation mechanism of the low-frequency locally resonant band gap in the two-dimensional ternary phononic crystals
Wang Gang (王刚), Liu Yao-Zong (刘耀宗), Wen Ji-Hong (温激鸿), Yu Dian-Long (郁殿龙). Chin. Phys. B, 2006, 15(2): 407-411.
[14] Doubly coupled vibration band gaps in periodic thin-walled open cross-section beams
Yu Dian-Long (郁殿龙), Liu Yao-Zong (刘耀宗), Qiu Jing (邱静), Wang Gang (王刚), Wen Ji-Hong (温激鸿). Chin. Phys. B, 2005, 14(8): 1501-1506.
No Suggested Reading articles found!