Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(3): 030502    DOI: 10.1088/1674-1056/27/3/030502
GENERAL Prev   Next  

Image encryption technique based on new two-dimensional fractional-order discrete chaotic map and Menezes-Vanstone elliptic curve cryptosystem

Zeyu Liu(刘泽宇)1, Tiecheng Xia(夏铁成)1, Jinbo Wang(王金波)2
1 Department of Mathematics, Shanghai University, Shanghai 200444, China;
2 Science and Technology on Communication Security Laboratory, Chengdu 610041, China
Abstract  We propose a new fractional two-dimensional triangle function combination discrete chaotic map (2D-TFCDM) with the discrete fractional difference. Moreover, the chaos behaviors of the proposed map are observed and the bifurcation diagrams, the largest Lyapunov exponent plot, and the phase portraits are derived, respectively. Finally, with the secret keys generated by Menezes-Vanstone elliptic curve cryptosystem, we apply the discrete fractional map into color image encryption. After that, the image encryption algorithm is analyzed in four aspects and the result indicates that the proposed algorithm is more superior than the other algorithms.
Keywords:  chaos      fractional two-dimensional triangle function combination discrete chaotic map      image encryption      Menezes-Vanstone elliptic curve cryptosystem  
Received:  29 September 2017      Revised:  11 November 2017      Published:  05 March 2018
PACS:  05.45.Ac (Low-dimensional chaos)  
  05.45.Df (Fractals)  
  05.45.Gg (Control of chaos, applications of chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61072147 and 11271008).
Corresponding Authors:  Tiecheng Xia     E-mail:

Cite this article: 

Zeyu Liu(刘泽宇), Tiecheng Xia(夏铁成), Jinbo Wang(王金波) Image encryption technique based on new two-dimensional fractional-order discrete chaotic map and Menezes-Vanstone elliptic curve cryptosystem 2018 Chin. Phys. B 27 030502

[1] Chai X L, Gan Z H, Lu Y, Zhang M H and Chen Y R 2016 Chin. Phys. B 25 100503
[2] Chai X L, Gan Z H, Yuan K, Lu Y and Chen Y R 2017 Chin. Phys. B 26 020504
[3] Ye G D, Huang X L, Zhang L Y and Wang Z X 2017 Chin. Phys. B 26 010501
[4] Xu L, Gou X, Li Z and Li J 2017 Opt. Laser. Eng. 91 41
[5] Teng L, Wang X Y and Meng J 2017 Multimedia Tools Appl. 1
[6] Enayatifar R, Abdullah A H, Isnin I F, Altameem A and Lee M 2017 Opt. Laser. Eng. 90 146
[7] Li Y, Wang C and Chen H 2017 Opt. Laser. Eng. 90 238
[8] Ismail S M, Said L A, Rezk A A, Radwan A G, Madian A H, Abu-ElYazeed M F and Soliman A M 2017 IEEE The 6th International Conference on Modern Circuits and Systems Technologies pp.~1-4
[9] Zhao J F, Wang S Y, Zhang L T and Wang X Y 2017 J. Electr. Comput. Eng. 20178672716
[10] Li C and Chen G 2004 Physica A 341 55
[11] Wang Z, Huang X, Li Y X and Song X N 2013 Chin. Phys. B 22 010504
[12] Radwan A G, Abd-El-Hafiz S K and AbdElHaleem S H 2012 IEEE, International Conference on Engineering and Technology (ICET)
[13] Miller K S and Ross B 1988 Proceedings of the International Symposium on Univalent Functions, Fractional Calculus and their Applications
[14] Bohner M and Peterson A 2012 Dynamic Equations on Time Scales: An Introduction with Applications (Springer)
[15] Atici F M and Eloe P W 2009 Proc. Am. Math. Soc. 137 981
[16] Atici F M and Sengul S 2010 J. Math. Anal. Appl. 369 1
[17] Holm M T 2011 Comput. Math. Appl. 62 1591
[18] Ortigueira M D, Coito F J V and Trujillo J J 2013 IFAC Proceedings Volumes 46 629
[19] Ortigueira M D 2000 IEEE, Proceedings-Vision, Image and Signal Processing 147 71
[20] Wu G C, Baleanu D and Zeng S D 2014 Phys. Lett. A 378 484
[21] Wu G C and Baleanu D 2015 Nonlinear Dyn. 80 1697
[22] Wu G C and Baleanu D 2014 Nonlinear Dyn. 75 283
[23] Koblitz N 1987 Math. Comput. 48 203
[24] Miller V S 1985 Conference on the Theory and Application of Cryptographic Techniques (Berlin, Heidelberg: Springer)
[25] Araki K, Satoh T and Miura S 1998 International Workshop on Public Key Cryptography (Berlin, Heidelberg: Springer)
[26] Ma C 2014 National Defense Industry Press
[27] Yan Z Y 2005 Phys. Lett. A 342 309
[28] Yan Z Y 2006 Chaos 16 013119
[29] Atici F M and Eloe P W 2007 Int. J. Differ. Equ. 2 165
[30] Paral P, Dasgupta T and Bhattacharya S 2014 International Conference on Communications and Signal Processing (ICCSP)
[31] Wu X, Li Y and Kurths J 2015 PloS One 10 e0119660
[32] Xu Y, Wang H, Li Y and Pei B 2014 Commun. Nonlinear Sci. Numer. Simulat. 19 3735
[33] Wang Z, Huang X, Li N and Song X N 2012 Chin. Phys. B 21 050506
[34] Wu G C, Baleanu D and Lin Z X 2016 J. Vib. Control 22 2092
[35] Liu Z Y and Xia T C 2017 Appl. Comput. Inf. DOI:10.1016/j.aci.2017.07.002
[36] Liu Z Y, Xia T C and Wang J B 2017 J. Vib. Control DOI:1077546317734712
[37] Elnashaie S S E H and Abashar M E 1995 Chaos Soliton. Fract. 5 797
[38] Abdeljawad T and Baleanu D 2011 J. Comput. Anal. Appl. 13 574
[39] Chen F, Luo X and Zhou Y 2011 Adv. Differ. Equ. 2011 713201
[40] Xiao Y 2006 Research on Elliptic Curve Cryptography (Wuhan: Huazhong University of Science and Technology Press) (in Chinese)
[41] Dawaheh Z E, Yaakob S N and Othman R R B 2016 J. Theor. Appl. Inf. Technol. 85 290
[42] Li P, Min L, Hu Y, Zhao G and Li X 2012 IEEE 6th International Conference on Information and Automation for Sustainability (ICIAfS)
[43] Guo F M and Tu L 2015 The Application of Chaotic Theory in Cryptography (Beijing: Beijing Institute of Technology Press) (in Chinese)
[44] Xiao D, Liao X and Wei P 2009 Chaos Soliton. Fract. 40 2191
[45] Li C, Li S, Chen G and Halang W A 2009 Image Vision Comput. 27 1035
[46] Rhouma R, Solak E and Belghith S 2010 Commun. Nonlinear Sci. Numer. Simulat. 15 1887
[1] A multi-directional controllable multi-scroll conservative chaos generator: Modelling, analysis, and FPGA implementation
En-Zeng Dong(董恩增), Rong-Hao Li(李荣昊), and Sheng-Zhi Du(杜升之). Chin. Phys. B, 2021, 30(2): 020505.
[2] Random-injection-based two-channel chaos with enhanced bandwidth and suppressed time-delay signature by mutually coupled lasers: Proposal and numerical analysis
Shi-Rong Xu(许世蓉), Xin-Hong Jia (贾新鸿), Hui-Liang Ma(马辉亮), Jia-Bing Lin(林佳兵), Wen-Yan Liang(梁文燕), and Yu-Lian Yang(杨玉莲). Chin. Phys. B, 2021, 30(1): 014203.
[3] Quantum to classical transition induced by a classically small influence
Wen-Lei Zhao(赵文垒), Quanlin Jie(揭泉林). Chin. Phys. B, 2020, 29(8): 080302.
[4] Hidden attractors in a new fractional-order discrete system: Chaos, complexity, entropy, and control
Adel Ouannas, Amina Aicha Khennaoui, Shaher Momani, Viet-Thanh Pham, Reyad El-Khazali. Chin. Phys. B, 2020, 29(5): 050504.
[5] Bifurcation and chaos characteristics of hysteresis vibration system of giant magnetostrictive actuator
Hong-Bo Yan(闫洪波), Hong Gao(高鸿), Gao-Wei Yang(杨高炜), Hong-Bo Hao(郝宏波), Yu Niu(牛禹), Pei Liu(刘霈). Chin. Phys. B, 2020, 29(2): 020504.
[6] Chaotic dynamics of complex trajectory and its quantum signature
Wen-Lei Zhao(赵文垒), Pengkai Gong(巩膨恺), Jiaozi Wang(王骄子), and Qian Wang(王骞). Chin. Phys. B, 2020, 29(12): 120302.
[7] Memristor-based hyper-chaotic circuit for image encryption
Jiao-Jiao Chen(陈娇娇), Deng-Wei Yan(闫登卫), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2020, 29(11): 110504.
[8] Nonlinear dynamics in non-volatile locally-active memristor for periodic and chaotic oscillations
Wen-Yu Gu(谷文玉), Guang-Yi Wang(王光义), Yu-Jiao Dong(董玉姣), and Jia-Jie Ying(应佳捷). Chin. Phys. B, 2020, 29(11): 110503.
[9] Chaotic analysis of Atangana-Baleanu derivative fractional order Willis aneurysm system
Fei Gao(高飞), Wen-Qin Li(李文琴), Heng-Qing Tong(童恒庆), Xi-Ling Li(李喜玲). Chin. Phys. B, 2019, 28(9): 090501.
[10] Phase retrieval algorithm for optical information security
Shi-Qing Wang(王诗晴), Xiang-Feng Meng(孟祥锋), Yu-Rong Wang(王玉荣), Yong-Kai Yin(殷永凯), Xiu-Lun Yang(杨修伦). Chin. Phys. B, 2019, 28(8): 084203.
[11] New chaotical image encryption algorithm based on Fisher-Yatess scrambling and DNA coding
Xing-Yuan Wang(王兴元), Jun-Jian Zhang(张钧荐), Fu-Chen Zhang(张付臣), Guang-Hui Cao(曹光辉). Chin. Phys. B, 2019, 28(4): 040504.
[12] Dynamical stable-jump-stable-jump picture in a non-periodically driven quantum relativistic kicked rotor system
Hsincheng Yu(于心澄), Zhongzhou Ren(任中洲), Xin Zhang(张欣). Chin. Phys. B, 2019, 28(2): 020504.
[13] Design new chaotic maps based on dimension expansion
Abdulaziz O A Alamodi, Kehui Sun(孙克辉), Wei Ai(艾维), Chen Chen(陈晨), Dong Peng(彭冬). Chin. Phys. B, 2019, 28(2): 020503.
[14] Enhancing von Neumann entropy by chaos in spin-orbit entanglement
Chen-Rong Liu(刘郴荣), Pei Yu(喻佩), Xian-Zhang Chen(陈宪章), Hong-Ya Xu(徐洪亚), Liang Huang(黄亮), Ying-Cheng Lai(来颖诚). Chin. Phys. B, 2019, 28(10): 100501.
[15] Experimental investigation of the fluctuations in nonchaotic scattering in microwave billiards
Runzu Zhang(张润祖), Weihua Zhang(张为华), Barbara Dietz, Guozhi Chai(柴国志), Liang Huang(黄亮). Chin. Phys. B, 2019, 28(10): 100502.
No Suggested Reading articles found!