Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 028401    DOI: 10.1088/1674-1056/27/2/028401
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A low-outgassing-rate carbon fiber array cathode

An-Kun Li(李安昆), Yu-Wei Fan(樊玉伟), Bao-Liang Qian(钱宝良), Zi-Cheng Zhang(张自成), Tao Xun(荀涛)
College of Optoelectric Science and Engineering, National University of Defense Technology, Changsha 410073, China
Abstract  In this paper, a new carbon fiber based cathode-a low-outgassing-rate carbon fiber array cathode-is investigated experimentally, and the experimental results are compared with those of a polymer velvet cathode. The carbon fiber array cathode is constructed by inserting bunches of carbon fibers into the cylindrical surface of the cathode. In experiment, the diode base pressure is maintained at 1×10-2 Pa-2×10-2 Pa, and the diode is driven by a compact pulsed power system which can provide a diode voltage of about 100 kV and pulse duration of about 30 ns at a repetition rate of tens of Hz. Real-time pressure data are measured by a magnetron gauge. Under the similar conditions, the experimental results show that the outgassing rate of the carbon fiber array cathode is an order smaller than that of the velvet cathode and that this carbon fiber array cathode has better shot-to-shot stability than the velvet cathode. Hence, this carbon fiber array cathode is demonstrated to be a promising cathode for the radial diode, which can be used in magnetically insulated transmission line oscillator (MILO) and relativistic magnetron (RM).
Keywords:  high power microwave      magnetically insulated transmission line oscillator      carbon fiber array cathode      low outgassing rate  
Received:  04 August 2017      Revised:  09 November 2017      Published:  05 February 2018
PACS:  84.90.+a (Other topics in electronics, radiowave and microwave technology, and direct energy conversion and storage)  
  84.40.Fe (Microwave tubes (e.g., klystrons, magnetrons, traveling-wave, backward-wave tubes, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61671457).
Corresponding Authors:  Yu-Wei Fan     E-mail:  fyw9108212@126.com
About author:  84.90.+a; 84.40.Fe

Cite this article: 

An-Kun Li(李安昆), Yu-Wei Fan(樊玉伟), Bao-Liang Qian(钱宝良), Zi-Cheng Zhang(张自成), Tao Xun(荀涛) A low-outgassing-rate carbon fiber array cathode 2018 Chin. Phys. B 27 028401

[1] Krasik Y E, Dunaevsky A and Felsteiner J 2001 Phys. Plasmas 8 2466
[2] Krasik Y E, Yarmolich D, Gleizer J Z, Vekselman V, Hadas Y, Gurovich V T and Felsteiner J 2009 Phys. Plasmas 16 057103
[3] Shiffler D, Haworth M, Cartwright K, Umstattd R, Ruebush M, Heidger S, LaCour M, Golby K, Sullivan D, Duselis P and Luginsland J 2008 IEEE Trans. Plasma Sci. 36 718
[4] Fan Y W, Zhong H H, Li Z Q, Shu T, Yang H W, Zhou H, Yuan C W, Zhou W H and Luo L 2008 Phys. Plasmas 15 083102
[5] Fan Y W, Zhong H H, Zhang J D, Shu T and Liu J L 2014 Rev. Sci. Instrum. 85 053512
[6] Fan Y W, Wang X Y, Zhang Z C, Xun T and Yang H W 2016 Vacuum 128 39
[7] Liu L, Li L M, Wen J C and Wan H 2009 Rev. Sci. Instrum. 80 023303
[8] Fan Y W, Zhong H H, Li Z Q, Yang H W, Shu T, Zhou H, Yuan C W, Zhang J and Luo L 2008 J. Appl. Phys. 104 023304
[9] Umstattd R J, Schlise C A and Wang F 2005 IEEE Trans. Plasma Sci. 33 901
[10] Hua Y, Wan H, Chen X Y, Wu P and Bai S X 2016 Acta Phys. Sin. 65 168102(in Chinese)
[11] Shen Y, Zhang H, Xia L S, Liu X G and Yang A M 2012 Acta Phys. Sin. 61 072901(in Chinese)
[12] Liu L, Wan H, Zhang J, Wen J C, Zhang Y Z and Liu Y G 2004 IEEE Trans. Plasma Sci. 32 1742
[13] Fan Y W, Wang X Y, He L, Zhong H H and Zhang J D 2015 Chin. Phys. B 24 035203
[14] Fan Y W, Wang X Y, Li G L, Yang H W, Zhong H H and Zhang J D 2016 IEEE Trans. Plasma Sci. 63 1307
[15] Fan Y W, Zhong H H, Li Z Q, Shu T, Yang H W, Yang J H, Wang Y, Luo L and Zhao Y S 2008 Chin. Phys. B 17 1804
[16] Fan Y W, Zhong H H, Li Z Q, Yuan C W, Shu T, Yang H W, Wang Y and Luo L 2011 IEEE Trans. Plasma Sci. 39 540
[17] Qin F, Wang D, Chen D B and Wen J 2012 Acta Phys. Sin. 61 094101(in Chinese)
[18] Jiang T, He J T, Zhang J D, Li Z Q and Ling J P 2016 Chin. Phys. 25 125202
[19] Li W, Liu Y G and Yang J H 2012 Acta Phys. Sin. 61 038401(in Chinese)
[20] Liu L, Li L M, Xu Q F, Chang L and Wen J C 2009 Chin. Phys. B 18 3367
[21] Shiffler D, LaCour M J, Sena M D, Mitchell M D, Haworth M D, Hendricks K J and Spencer T A 2000 IEEE Trans. Plasma Sci. 28 517
[22] Shiffler D, Ruebush M, Haworth M, Umstattd R, LaCour M, Golby K, Zagar D and Knowles T 2002 Rev. Sci. Instrum. 73 4358
[23] Krasik Y E, Dunaevsky A, Krokhmal A, Felsteiner J, Gunin A V, Pegel I V and Korovin S D 2001 J. Appl. Phys. 89 2379
[24] Shiffler D, LaCour M, Golby K, Sena M, Mitchell M, Haworth M, Hendricks K and Spencer T 2001 IEEE Trans. Plasma Sci. 29 445
[25] Xun T, Zhang J D, Yang H W, Zhang Z C and Fan Y W 2009 Phys. Plasmas 16 103106
[26] Xun T, Yang H W, Zhang J D, and Zhang Z C 2010 Vacuum 85 322
[27] Li A K, Fan Y W 2016 J. Appl. Phys. 120 065105
[28] Shi D F, Wang H G, Li W and Qian B L 2013 Acta Phys. Sin. 62 151101(in Chinese)
[29] Shen Y, Zhang H, Xia L S, Liu X G, Pan H F, Lv L, Yang A M, Shi J S, Zhang L W and Deng J J 2015 Plasma Sci. Technol. 17 129
[30] Miller R B 1998 J. Appl. Phys. 84 3880
[1] A compact dual-band radiation system
Yuan-Qiang Yu(于元强), Yu-Wei Fan(樊玉伟), and Xiao-Yu Wang(王晓玉)$. Chin. Phys. B, 2020, 29(11): 118402.
[2] Modes decomposition in particle-in-cell software CEMPIC
Aiping Fang(方爱平)†, Shanshan Liang(梁闪闪), Yongdong Li(李永东), Hongguang Wang(王洪广), and Yue Wang(王玥). Chin. Phys. B, 2020, 29(10): 100205.
[3] Transmission properties of microwave in rectangular waveguide through argon plasma
Xiaoyu Han(韩晓宇), Dawei Li(李大伟), Meie Chen(陈美娥), Zhan Zhang(张展), Zheng Li(李铮), Yujian Li(李雨键), Junhong Wang(王均宏). Chin. Phys. B, 2019, 28(3): 035204.
[4] Air breakdown induced by the microwave with two mutually orthogonal and heterophase electric field components
Pengcheng Zhao(赵朋程), Lixin Guo(郭立新). Chin. Phys. B, 2017, 26(9): 099201.
[5] Damage effect and mechanism of the GaAs high electron mobility transistor induced by high power microwave
Yang Liu(刘阳), Chang-Chun Chai(柴常春), Yin-Tang Yang(杨银堂), Jing Sun(孙静), Zhi-Peng Li(李志鹏). Chin. Phys. B, 2016, 25(4): 048504.
[6] Simulation and experimental study of high power microwave damage effect on AlGaAs/InGaAs pseudomorphic high electron mobility transistor
Yu Xin-Hai, Chai Chang-Chun, Liu Yang, Yang Yin-Tang, Xi Xiao-Wen. Chin. Phys. B, 2015, 24(4): 048502.
[7] A tunable magnetically insulated transmission line oscillator
Fan Yu-Wei, Wang Xiao-Yu, He Liang, Zhong Hui-Huang, Zhang Jian-De. Chin. Phys. B, 2015, 24(3): 035203.
[8] Hardening measures for bipolar transistor against microwave-induced damage
Chai Chang-Chun, Ma Zhen-Yang, Ren Xing-Rong, Yang Yin-Tang, Zhao Ying-Bo, Xin Hai. Chin. Phys. B, 2013, 22(6): 068502.
[9] Pulsed microwave damage trend of bipolar transistor as a function of pulse parameters
Ma Zhen-Yang, Chai Chang-Chun, Ren Xing-Rong, Yang Yin-Tang, Zhao Ying-Bo, Qiao Li-Ping. Chin. Phys. B, 2013, 22(2): 028502.
[10] HEM11 mode magnetically insulated transmission[2mm] line oscillator: simulation and experiment
Wang Dong, Qin Fen, Wen Jie, Chen Dai-Bing, Jin Xiao, An Hai-Shi, Zhang Xin-Kai. Chin. Phys. B, 2012, 21(8): 084101.
[11] Experimental investigation of a compact relativistic magnetron with axial TE11 mode radiation
Li Wei, Liu Yong-Gui, Shu Ting, Qian Bao-Liang. Chin. Phys. B, 2012, 21(8): 088401.
[12] Effects of microwave pulse-width damage on a bipolar transistor
Ma Zhen-Yang,Chai Chang-Chun,Ren Xing-Rong,Yang Yin-Tang,Chen Bin,Zhao Ying-Bo. Chin. Phys. B, 2012, 21(5): 058502.
[13] Magnetically insulated transmission line oscillator oscillated in a modified HEM11 mode
Wang Dong, Chen Dai-Bing, Qin Fen, Fan Zhi-Kai. Chin. Phys. B, 2009, 18(10): 4281-4286.
[14] A STUDY OF HIGH POWER MICROWAVE AIR BREAKDOWN
Liu Guo-zhi, Liu Jing-yue, Huang Wen-hua, Zhou Jin-shan, Song Xiao-xin, Ning Hui. Chin. Phys. B, 2000, 9(10): 757-763.
No Suggested Reading articles found!