Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(9): 099501    DOI: 10.1088/1674-1056/26/9/099501

Relationship measurement between ac-Stark shift of 40Ca+ clock transition and laser polarization direction

Hong-Fang Song(宋红芳)1,2,3,4, Shao-Long Chen(陈邵龙)1,2,3,4, Meng-Yan Zeng(曾孟彦)1,2,3,4, Yao Huang(黄垚)1,2,3, Hu Shao(邵虎)1,2,3,4, Yong-Bo Tang(唐永波)5, Hua Guan(管桦)1,2,3, Ke-Lin Gao(高克林)1,2,3
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China;
2 Key Laboratory of Atomic Frequency Standards, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China;
3 Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071, China;
4 University of Chinese Academy of Sciences, Beijing 100049, China;
5 College of Physics and Materials Science, Henan Normal University, Xinxiang 453007, China

Ac-Stark shift of atom levels is caused by an ac-electromagnetic field. As an electromagnetic wave, laser light does induce ac-Stark shift. It is proved experimentally that if the light is linearly polarized, the dynamic polarizability changes with polarization direction. The polarization direction of the linearly-polarized laser is tuned by 720°, and the ac-Stark shifts of the 4S1/2, m= 1/2→3D5/2, m= 1/2 clock transitions in 40Ca+ are measured in steps of 10°. The frequency shifts change with laser polarization in a periodical manner and have values opposite to each other.

Keywords:  clock transition      ac-Stark shift      laser polarization direction  
Received:  04 April 2017      Revised:  23 May 2017      Published:  05 September 2017
PACS:  95.55.Sh (Auxiliary and recording instruments; clocks and frequency standards)  
  76.70.Fz (Double nuclear magnetic resonance (DNMR), dynamical nuclear polarization)  
  29.27.Hj (Polarized beams)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 91336211, 11634013, 11622434, 11474318, and 11504094) and the Chinese Academy of Sciences (Grant No. XDB21030000).

Corresponding Authors:  Lin Gao     E-mail:

Cite this article: 

Hong-Fang Song(宋红芳), Shao-Long Chen(陈邵龙), Meng-Yan Zeng(曾孟彦), Yao Huang(黄垚), Hu Shao(邵虎), Yong-Bo Tang(唐永波), Hua Guan(管桦), Ke-Lin Gao(高克林) Relationship measurement between ac-Stark shift of 40Ca+ clock transition and laser polarization direction 2017 Chin. Phys. B 26 099501

[1] Singh S, Sahoo B K and Arora B 2016 Phys. Rev. A 93 063422
[2] Adhikari C M, Kawasaki A and Jentschura U D 2016 Phys. Rev. A 94 032510
[3] Goldschmidt E A, Norris D G, Koller S B, Wyllie R, Brown R C, Porto J V, Safronova U I and Safronova M S 2015 Phys. Rev. A 91 032518
[4] Sahoo B K and Arora B 2013 Phys. Rev. A 87 023402
[5] Safronova M S, Safronova U I and Clark C W 2012 Phys. Rev. A 86 042505
[6] Arora B, Safronova M S and Clark C W 2007 Phys. Rev. A 76 052509
[7] Kaur J, Singh S, Arora B and Sahoo B K 2015 Phys. Rev. A 92 031402
[8] Tang Y B, Qiao H X, Shi T Y and Mitroy J 2013 Phys. Rev. A 87 042517
[9] Huang Y, Guan H, Liu P, Bian W, Ma L, Liang K, Li T and Gao K 2016 Phys. Rev. Lett. 116 013001
[10] Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J and Bergquist J C 2008 Science 319 1808
[11] Chou C W, Hume D B, Koelemeij J C J, Wineland D J and Rosenband T 2010 Phys. Rev. Lett. 104 070802
[12] Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L and Ye J 2014 Nature 506 71
[13] Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B J, McNally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L and Ye J 2015 Nat. Commun. 6 6896
[14] Leggett A J 2001 Rev. Mod. Phys. 73 307
[15] Leggett A J 2003 Rev. Mod. Phys. 75 1083
[16] Weiner J, Bagnato V S, Zilio S and Julienne P S 1999 Rev. Mod. Phys. 71 1
[17] Jones K M, Tiesinga E, Lett P D and Julienne P S 2006 Rev. Mod. Phys. 78 483
[18] Liu P L, Huang Y, Bian W, Shao H, Guan H, Tang Y B, Li C B, Mitroy J and Gao K L 2015 Phys. Rev. Lett. 114 223001
[19] Liu P L, Huang Y, Bian W, Shao H, Qian Y, Guan H, Tang L Y and Gao K L 2015 Chin. Phys. B 24 039501
[20] Arora B and Sahoo B K 2012 Phys. Rev. A 86 033416
[21] Lepers M, Wyart J F and Dulieu O 2014 Phys. Rev. A 89 022505
[22] Huang Y, Cao J, Liu P, Liang K, Ou B, Guan H, Huang X, Li T and Gao K 2012 Phys. Rev. A 85 030503
[23] Huang Y, Liu Q, Cao J, Ou B, Liu P, Guan H, Huang X and Gao K 2011 Phys. Rev. A 84 053841
[24] Qu W C, Huang Y, Guan H, Huang X R and Gao K L 2011 Chin. J. Lasers 38 0802008
[25] Bernard J E, Madej A A, Marmet L, Whitford B G, Siemsen K J and Cundy S 1999 Phys. Rev. Lett. 82 3228
[26] Barwood G, Gao K, Gill P, Huang G and Klein H A 2001 IEEE Trans. Instrum. Meas. 50 543
[1] Precise calibration of zero-crossing temperature and drift of an ultralow expansion cavity with a clock transition spectrum
Hui Liu(刘慧), Kun-Liang Jiang(姜坤良), Jin-Qi Wang(王进起), Zhuan-Xian Xiong(熊转贤), Ling-Xiang He(贺凌翔), Bao-Long Lü(吕宝龙). Chin. Phys. B, 2018, 27(5): 053201.
[2] In-situ measurement of magnetic field gradient in a magnetic shield by a spin-exchange relaxation-free magnetometer
Fang Jian-Cheng, Wang Tao, Zhang Hong, Li Yang, Cai Hong-Wei. Chin. Phys. B, 2015, 24(6): 060702.
No Suggested Reading articles found!