Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 077504    DOI: 10.1088/1674-1056/25/7/077504
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Control of the interparticle spacing in superparamagnetic iron oxide nanoparticle clusters by surface ligand engineering

Dan Wang(王丹)1, Bingbing Lin(林兵兵)1, Taipeng Shen(申太鹏)1, Jun Wu(吴君)1, Fuhua Hao(豪富华)2, Chunchao Xia(夏春潮)3, Qiyong Gong(龚启勇)3, Huiru Tang(唐惠儒)2, Bin Song(宋彬)3, Hua Ai(艾华)1,3
1 National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China;
2 Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China;
3 Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
Abstract  

Polymer-mediated self-assembly of superparamagnetic iron oxide (SPIO) nanoparticles allows modulation of the structure of SPIO nanocrystal cluster and their magnetic properties. In this study, dopamine-functionalized polyesters (DA-polyester) were used to directly control the magnetic nanoparticle spacing and its effect on magnetic resonance relaxation properties of these clusters was investigated. Monodisperse SPIO nanocrystals with different surface coating materials (poly(ε-caprolactone), poly(lactic acid)) of different molecular weights containing dopamine (DA) structure (DA-PCL2k, DA-PCL1k, DA-PLA1k)) were prepared via ligand exchange reaction, and these nanocrystals were encapsulated inside amphiphilic polymer micelles to modulate the SPIO nanocrystal interparticle spacing. Small-angle x-ray scattering (SAXS) was applied to quantify the interparticle spacing of SPIO clusters. The results demonstrated that the tailored magnetic nanoparticle clusters featured controllable interparticle spacing providing directly by the different surface coating of SPIO nanocrystals. Systematic modulation of SPIO nanocrystal interparticle spacing can regulate the saturation magnetization (Ms) and T2 relaxation of the aggregation, and lead to increased magnetic resonance (MR) relaxation properties with decreased interparticle spacing.

Keywords:  nanoparticle clusters      interparticle spacing      ligand exchange      magnetization  
Received:  22 May 2016      Published:  05 July 2016
PACS:  75.75.-c (Magnetic properties of nanostructures)  
  81.16.Dn (Self-assembly)  
  87.61.-c (Magnetic resonance imaging)  
  87.85.J- (Biomaterials)  
Fund: 

Project supported by the National Key Basic Research Program of China (Grant No. 2013CB933903), the National Key Technology R&D Program of China (Grant No. 2012BAI23B08), and the National Natural Science Foundation of China (Grant Nos. 20974065, 51173117, and 50830107).

Corresponding Authors:  Hua Ai     E-mail:  huaai@scu.edu.cn

Cite this article: 

Dan Wang(王丹), Bingbing Lin(林兵兵), Taipeng Shen(申太鹏), Jun Wu(吴君), Fuhua Hao(豪富华), Chunchao Xia(夏春潮), Qiyong Gong(龚启勇), Huiru Tang(唐惠儒), Bin Song(宋彬), Hua Ai(艾华) Control of the interparticle spacing in superparamagnetic iron oxide nanoparticle clusters by surface ligand engineering 2016 Chin. Phys. B 25 077504

[1] Iliff J J, Lee H, Yu M, Feng T, Logan J, Nedergaard M and Benveniste H 2013 J. Clin. Invest. 123 1299
[2] Jin R, Lin B, Li D and Ai H 2014 Curr. Opin. Pharmacol. 18 18
[3] Nathan P, Zweifel M, Padhani A R, Koh D M, Ng M, Collins D J, Harris A, Carden C, Smythe J, Fisher N, Taylor N J, Stirling J J, Lu S P, Leach M O, Rustin G J S and Judson I 2012 Clin. Cancer Res. 18 3428
[4] Sourbron S, Sommer W H, Reiser M F and Zech C J 2012 Radiology 263 874
[5] Wang D, Su H, Liu Y, Wu C, Xia C, Sun J, Gao F, Gong Q, Song B and Ai H 2012 Chin. Sci. Bullet 57 4012
[6] Wang D, Lin B B and Ai H 2014 Pharm. Res.-Dordr 31 1390
[7] Shokrollahi H 2013 Mat. Sci. Eng. C-Mater. 33 4485
[8] Lin B, Su H, Jin R, Li D, Wu C, Jiang X, Xia C, Gong Q, Song B and Ai H 2015 Sci. Bullet 60 1272
[9] Su H Y, Wu C Q, Li D Y and Ai H 2015 Chin. Phys. B 24 127506
[10] Jasanoff A 2007 Curr. Opin Neurobiol. 17 593
[11] Xie J, Liu G, Eden H S, Ai H and Chen X Y 2011 Accounts Chem. Res. 44 883
[12] Lee N and Hyeon T 2012 Chem. Soc. Rev. 41 2575
[13] Jun Y W, Lee J H and Cheon J 2008 Angew. Chem. Int. Ed. 47 5122
[14] Lu J, Ma S L, Sun J Y, Xia C C, Liu C, Wang Z Y, Zhao X N, Gao F B, Gong Q Y, Song B, Shuai X T, Ai H and Gu Z W 2009 Biomaterials 30 2919
[15] Paquet C, de Haan H W, Leek D M, Lin H Y, Xiang B, Tian G H, Kell A and Simard B 2011 Acs Nano 5 3104
[16] Su H Y, Liu Y H, Wang D, Wu C Q, Xia C C, Gong Q Y, Song B and Ai H 2013 Biomaterials 34 1193
[17] Poselt E, Kloust H, Tromsdorf U, Janschel M, Hahn C, Masslo C and Weller H 2012 Acs Nano 6 1619
[18] Tromsdorf U I, Bigall N C, Kaul M G, Bruns O T, Nikolic M S, Mollwitz B, Sperling R A, Reimer R, Hohenberg H, Parak W J, Forster S, Beisiegel U, Adam G and Weller H 2007 Nano Lett. 7 2422
[19] Taktak S, Sosnovik D, Cima MJ, Weissfeder R and Josephson L 2007 Anal. Chem. 79 8863
[20] Frankamp BL, Boal AK, Tuominen M T and Rotello V M 2005 J. Am. Chem. Soc. 127 9731
[21] Sun S H, Zeng H, Robinson D B, Raoux S, Rice P M, Wang S X and Li G X 2004 J. Am. Chem. Soc. 126 273
[22] Xu C J, Xu K M, Gu H W, Zheng R K, Liu H, Zhang X X, Guo Z H and Xu B 2004 J. Am. Chem. Soc. 126 9938
[23] Matsumoto Y and Jasanoff A 2008 Magn. Reson. Imaging 26 994
[24] Tong S, Hou S J, Zheng Z L, Zhou J and Bao G 2010 Nano Lett. 10 4607
[1] Field-induced N\'eel vector bi-reorientation of a ferrimagnetic insulator in the vicinity of compensation temperature
Peng Wang(王鹏), Hui Zhao(赵辉), Zhongzhi Luan(栾仲智), Siyu Xia(夏思宇), Tao Feng(丰韬), and Lifan Zhou(周礼繁). Chin. Phys. B, 2021, 30(2): 027501.
[2] Perpendicular magnetization switching by large spin—orbit torques from sputtered Bi2Te3
Zhenyi Zheng(郑臻益), Yue Zhang(张悦), Daoqian Zhu(朱道乾), Kun Zhang(张昆), Xueqiang Feng(冯学强), Yu He(何宇), Lei Chen(陈磊), Zhizhong Zhang(张志仲), Dijun Liu(刘迪军), Youguang Zhang(张有光), Pedram Khalili Amiri, Weisheng Zhao(赵巍胜). Chin. Phys. B, 2020, 29(7): 078505.
[3] Effect of interface magnetization depinning on the frequency shift of ferromagnetic and spin wave resonance in YIG/GGG films
Fanqing Lin(林凡庆), Shouheng Zhang(张守珩), Guoxia Zhao(赵国霞), Hongfei Li(李洪飞), Weihua Zong(宗卫华), Shandong Li(李山东). Chin. Phys. B, 2020, 29(6): 067601.
[4] Low temperature magnetism in the rare-earth perovskite GdScO3
Jie-Ming Sheng(盛洁明), Xu-Cai Kan(阚绪材), Han Ge(葛晗), Pei-Qian Yuan(袁培骞), Lei Zhang(张磊), Nan Zhao(赵南), Zong-Mei Song(宋宗美), Yuan-Yin Yao(姚远寅), Ji-Ning Tang(唐霁宁), Shan-Min Wang(王善民), Ming-Liang Tian(田明亮), Xin Tong(童欣), Liu-Suo Wu(吴留锁). Chin. Phys. B, 2020, 29(5): 057503.
[5] Magnetization reorientation induced by spin–orbit torque in YIG/Pt bilayers
Ying-Yi Tian(田颖异), Shuan-Hu Wang(王拴虎), Gang Li(李刚), Hao Li(李豪), Shu-Qin Li(李书琴), Yang Zhao(赵阳), Xiao-Min Cui(崔晓敏), Jian-Yuan Wang(王建元), Lv-Kuan Zou(邹吕宽), and Ke-Xin Jin(金克新). Chin. Phys. B, 2020, 29(11): 117504.
[6] Magnetic characterization of a thin Co2MnSi/L10–MnGa synthetic antiferromagnetic bilayer prepared by MBE
Shan Li(黎姗), Jun Lu(鲁军)†, Si-Wei Mao(毛思玮), Da-Hai Wei(魏大海), and Jian-Hua Zhao(赵建华). Chin. Phys. B, 2020, 29(10): 107501.
[7] Infrared light-emitting diodes based on colloidal PbSe/PbS core/shell nanocrystals
Byung-Ryool Hyun, Mikita Marus, Huaying Zhong(钟华英), Depeng Li(李德鹏), Haochen Liu(刘皓宸), Yue Xie(谢阅), Weon-kyu Koh, Bing Xu(徐冰), Yanjun Liu(刘言军), Xiao Wei Sun(孙小卫). Chin. Phys. B, 2020, 29(1): 018503.
[8] Influence of Tb on easy magnetization direction and magnetostriction of PrFe1.9 alloy
Chang-Xuan He(何昌璇), Yan-Mei Tang(唐妍梅), Xiang Li(李翔), Yun He(何云), Cai-Yan Lu(陆彩燕), Ze-Ping Guo(郭泽平). Chin. Phys. B, 2019, 28(11): 117501.
[9] Magnetism manipulation in ferromagnetic/ferroelectric heterostructures by electric field induced strain
Xiaobin Guo(郭晓斌), Dong Li(李栋), Li Xi(席力). Chin. Phys. B, 2018, 27(9): 097506.
[10] Micromagnetism simulation on effects of soft phase size on Nd2Fe14B/α–Fe nanocomposite magnet with soft phase imbedded in hard phase
Yu-Qing Li(李玉卿), Ming Yue(岳明), Yi Peng(彭懿), Hong-Guo Zhang(张红国). Chin. Phys. B, 2018, 27(8): 087502.
[11] Sub-millikelvin station at Synergetic Extreme Condition User Facility
Zhi Gang Cheng(程智刚), Jie Fan(樊洁), Xiunian Jing(景秀年), Li Lu(吕力). Chin. Phys. B, 2018, 27(7): 070702.
[12] Magnetic properties of misch-metal partially substituted Nd-Fe-B magnets sintered by dual alloy method
Jie-Fu Xiong(熊杰夫), Rong-Xiang Shang(商荣翔), Yan-Li Liu(刘艳丽), Xin Zhao(赵鑫), Wen-Liang Zuo(左文亮), Feng-Xia Hu(胡凤霞), Ji-Rong Sun(孙继荣), Tong-Yun Zhao(赵同云), Ren-Jie Chen(陈仁杰), Bao-Gen Shen(沈保根). Chin. Phys. B, 2018, 27(7): 077504.
[13] Current-induced synchronized magnetization reversal of two-body Stoner particles with dipolar interaction
Zhou-Zhou Sun(孙周洲), Yu Yang(杨玉), J Schliemann. Chin. Phys. B, 2018, 27(6): 067501.
[14] Interfacial effect on the reverse of magnetization and ultrafast demagnetization in Co/Ni bilayers with perpendicular magnetic anisotropy
Zi-Zhao Gong(弓子召), Wei Zhang(张伟), Wei He(何为), Xiang-Qun Zhang(张向群), Yong Liu(刘永), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2018, 27(5): 057501.
[15] Investigation of magnetization reversal process in pinned CoFeB thin film by in-situ Lorentz TEM
Ke Pei(裴科), Wei-Xing Xia(夏卫星), Bao-Min Wang(王保敏), Xing-Cheng Wen(文兴成), Ping Sheng(盛萍), Jia-Ping Liu(刘家平), Xin-Cai Liu(刘新才), Run-Wei Li(李润伟). Chin. Phys. B, 2018, 27(4): 047502.
No Suggested Reading articles found!