Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 074704    DOI: 10.1088/1674-1056/25/7/074704
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Segregation behavior of magnetic ions in continuous flowing solution under gradient magnetic field

Bing Ji(冀冰)1, Ping Wu(吴平)1, Han Ren(任菡)1, Shiping Zhang(张师平)1, Abdul Rehman1, Li Wang(王立)2
1 Department of Physics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China;
2 School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
Abstract  The research of magnetic separation starts from magnetic solid particles to nanoparticles, and in the research progress, particles become smaller gradually with the development of application of magnetic separation technology. Nevertheless, little experimental study of magnetic separation of molecules and ions under continuous flowing conditions has been reported. In this work, we designed a magnetic device and a “layered” flow channel to study the magnetic separation at the ionic level in continuous flowing solution. A segregation model was built to discuss the segregation behavior as well as the factors that may affect the separation. The magnetic force was proved to be the driving force which plays an indispensable role leading to the segregation and separation. The flow velocity has an effect on the segregation behavior of magnetic ions, which determines the separation result. On the other hand, the optimum flow velocity which makes maximum separation is related to the initial concentration of solution.
Keywords:  magnetic ions      magnetic separation      segregation      enrichment  
Received:  18 November 2015      Revised:  02 February 2016      Published:  05 July 2016
PACS:  47.65.Cb (Magnetic fluids and ferrofluids)  
  47.15.Rq (Laminar flows in cavities, channels, ducts, and conduits)  
  83.60.Np (Effects of electric and magnetic fields)  
  83.85.-c (Techniques and apparatus)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51276016).
Corresponding Authors:  Ping Wu     E-mail:  pingwu@sas.ustb.edu.cn

Cite this article: 

Bing Ji(冀冰), Ping Wu(吴平), Han Ren(任菡), Shiping Zhang(张师平), Abdul Rehman, Li Wang(王立) Segregation behavior of magnetic ions in continuous flowing solution under gradient magnetic field 2016 Chin. Phys. B 25 074704

[1] Berensmeier S 2006 Appl. Microbiol. Biotechnol. 73 495
[2] Ngomsik A F, Bee A, Draye M, Cote G and Cabuil V 2005 C. R. Chim. 8 963
[3] Aguilar-Arteaga K, Rodriguez J and Barrado E 2010 Anal. Chim. Acta 674 157
[4] He J, Huang M, Wang D, Zhang Z and Li G 2014 J. Pharm. Biomed. Anal. 101 84
[5] Li X S, Zhu G T, Luo Y B, Yuan B F and Feng Y Q 2013 TrAC, Trends Anal. Chem. 45 233
[6] Liu Y, Gao Y and Xu C J 2013 Chin. Phys. B 22 097503
[7] Menzel K, Lindner J and Nirschl H 2012 Sep. Purif. Technol. 92 122
[8] Mandel K, Hutter F, Gellermann C and Sextl G 2013 Sep. Purif. Technol. 109 144
[9] Gòmez-Pastora J, Bringas E and Ortiz I 2014 Chem. Eng. J. 256 187
[10] Yan X, Zhang X J, Yuan Y X, Han S Y, Xu M M, Gu R and Yao J L 2013 J. Sep. Sci. 36 3651
[11] Toh P Y, Yeap S P, Kong L P, Ng B W, Chan D J C, Ahmad A L and Lim J K 2012 Chem. Eng. J. 211 22
[12] Maki S and Hirota N 2014 J. Food. Eng. 120 31
[13] Petrakis L and Ahner P 1976 IEEE Trans. Magn. 12 486
[14] Ito A, Shinkai M, Honda H and Kobayashi T 2005 J. Biosci. Bioeng. 100 1
[15] Fraga García P, Brammen M, Wolf M, Reinlein S, Freiherr Von Roman M and Berensmeier S 2015 Sep. Purif. Technol. 150 29
[16] Horák D, Babič M and Macková H B 2007 J. Sep. Sci. 30 1751
[17] Zhang L Y, Dou Y H, Zhang L and Gu H C 2007 Chin. Phys. Lett. 24 483
[18] Fan C Z, Wang J Q, Cheng Y G, Ding P, Liang E J and Huang J P 2013 Chin. Phys. B 22 084703
[19] Cai J, Wang L, Wu P, Li Z Q, Tong L G and Sun S F 2008 J. Magn. Magn. Mater. 320 171
[20] Cai J, Wang L and Wu P 2007 Phys. Lett. A 362 105
[21] Wang L, Cai J, Wu P, Tong L G and Sun S F 2007 J. Therm. Sci. 16 79
[22] Asako Y and Suzuki Y 2007 J. Fluid. Eng. 129 438
[23] Fujiwara M, Mitsuda K and Tanimoto Y 2006 J. Phys. Chem. B 110 13965
[24] Zhong C W, Xie J, Zhuo C S and Xiong S W 2009 Chin. Phys. B 18 4083
[25] Haynes W M 2014 CRC Handbook of Chemistry and Physics, 95th edn. (Boca Raton: CRC press) pp. 4131-4134
[26] Ma D, Guo M and Zhang M 2013 J. Min. Metall. Sect. B-Metall. 49 225
[27] Fujiwara M, Kodoi D, Duan W and Tanimoto Y 2001 J. Phys. Chem. B 105 3343
[28] Fujiwara M, Chie K, Sawai J, Shimizu D and Tanimoto Y 2004 J. Phys. Chem. B 108 3531
[29] Lim J, Yeap S P, Leow C H, Toh P Y and Low S C 2014 J. Colloid Interface Sci. 421 170
[30] Lim J, Yeap S P and Low S C 2014 Sep. Purif. Technol. 123 171
[31] Job G and Herrmann F 2006 Eur. J. Phys. 27 353
[1] Extended damage range of (Al0.3Cr0.2Fe0.2Ni0.3)3O4 high entropy oxide films induced by surface irradiation
Jian-Cong Zhang(张健聪), Sen Sun(孙森), Zhao-Ming Yang(杨朝明), Nan Qiu(裘南), Yuan Wang(汪渊). Chin. Phys. B, 2020, 29(6): 066104.
[2] Segregation behavior and embrittling effect of lanthanide La, Ce, Pr, and Nd at Σ3(111) tilt symmetric grain boundary in α-Fe
Jinli Cao(曹金利), Wen Yang(杨文), Xinfu He(贺新福). Chin. Phys. B, 2019, 28(12): 126802.
[3] Effect of nickel segregation on CuΣ9 grain boundary undergone shear deformations
Xiang-Yue Liu(刘湘月), Hong Zhang(张红), Xin-Lu Cheng(程新路). Chin. Phys. B, 2018, 27(6): 063103.
[4] Direct characterization of boron segregation at random and twin grain boundaries
Xiang-Long Li(李向龙), Ping Wu(吴平), Rui-Jie Yang(杨锐杰), Shi-Ping Zhang(张师平), Sen Chen(陈森), Xue-Min Wang(王学敏), Xiu-Lan Huai(淮秀兰). Chin. Phys. B, 2017, 26(8): 086802.
[5] DEM simulation of granular segregation in two-compartment system under zero gravity
Wenguang Wang(王文广), Zhigang Zhou(周志刚), Jin Zong(宗谨), Meiying Hou(厚美瑛). Chin. Phys. B, 2017, 26(4): 044501.
[6] Segregations and desorptions of Ge atoms in nanocomposite Si1-xGex films during high-temperature annealing
Yu Wang(汪煜), Meng Yang(杨濛), Gang Wang(王刚), Xiao-Xu Wei(魏晓旭), Jun-Zhuan Wang(王军转), Yun Li(李昀), Ze-Wen Zou(左则文), You-Dou Zheng(郑有炓), Yi Shi(施毅). Chin. Phys. B, 2017, 26(12): 126801.
[7] Effects of rapid thermal annealing on crystallinity and Sn surface segregation of Ge1-xSnx films on Si (100) and Si (111)
Yuan-Hao Miao(苗渊浩), Hui-Yong Hu(胡辉勇), Jian-Jun Song(宋建军), Rong-Xi Xuan(宣荣喜), He-Ming Zhang(张鹤鸣). Chin. Phys. B, 2017, 26(12): 127306.
[8] Structural optimization and segregation behavior of quaternary alloy nanoparticles based on simulated annealing algorithm
Xin-Ze Lu(陆欣泽), Gui-Fang Shao(邵桂芳), Liang-You Xu(许两有), Tun-Dong Liu(刘暾东), Yu-Hua Wen(文玉华). Chin. Phys. B, 2016, 25(5): 053601.
[9] Segregation of alloying atoms at a tilt symmetric grain boundary in tungsten and their strengthening and embrittling effects
Li Zhi-Wu, Kong Xiang-Shan, Liu-Wei, Liu Chang-Song, Fang Qian-Feng. Chin. Phys. B, 2014, 23(10): 106107.
[10] Surface segregation of InGaAs films by the evolution of reflection high-energy electron diffraction patterns
Zhou Xun,Luo Zi-Jiang,Guo Xiang,Zhang Bi-Chan,Shang Lin-Tao,Zhou Qing,Deng Chao-Yong,Ding Zhao. Chin. Phys. B, 2012, 21(4): 046103.
[11] Directed segregation in compartmentalized bi-disperse granular gas
Sajjad Hussain Shah, Li Yin-Chang, Cui Fei-Fei, Zhang Qi, Hou Mei-Ying. Chin. Phys. B, 2012, 21(1): 014501.
[12] A molecular dynamics simulation of segregation behaviours of horizontally vibrated binary granular mixture
Xia Ji-Hong, You Yu-Wei, WangPan-Pan, Wang Wei-Lu, Liu Chang-Song. Chin. Phys. B, 2010, 19(5): 056404.
[13] Phase field simulation of the columnar dendritic growth and microsegregation in a binary alloy
Li Jun-Jie, Wang Jin-Cheng, Yang Gen-Cang. Chin. Phys. B, 2008, 17(9): 3516-3522.
[14] Research of the behaviour of O chemisorption on the (110) surface of Rhx--Pt1-x alloy
Zhang Hui, Zhang Guo-Ying, Wang Rui-Dan, Zhong Bo. Chin. Phys. B, 2006, 15(3): 641-644.
[15] Effects of container geometry on granular segregation pattern
Hu Mao-Bin, Kong Xiang-Zhao, Wu Qing-Song, Wu Yong-Hong. Chin. Phys. B, 2005, 14(9): 1844-1849.
No Suggested Reading articles found!