Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 073201    DOI: 10.1088/1674-1056/25/7/073201
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Automatic compensation of magnetic field for a rubidium space cold atom clock

Lin Li(李琳), Jingwei Ji(吉经纬), Wei Ren(任伟), Xin Zhao(赵鑫), Xiangkai Peng(彭向凯), Jingfeng Xiang(项静峰), Desheng Lü(吕德胜), Liang Liu(刘亮)
Key Laboratory for Quantum Optics and Center of Cold Atom Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
Abstract  

When the cold atom clock operates in microgravity around the near-earth orbit, its performance will be affected by the fluctuation of magnetic field. A strategy is proposed to suppress the fluctuation of magnetic field by additional coils, whose current is changed accordingly to compensate the magnetic fluctuation by the linear and incremental compensation. The flight model of the cold atom clock is tested in a simulated orbital magnetic environment and the magnetic field fluctuation in the Ramsey cavity is reduced from 17 nT to 2 nT, which implied the uncertainty due to the second order Zeeman shift is reduced to be less than 2×10-16. In addition, utilizing the compensation, the magnetic field in the trapping zone can be suppressed from 7.5 μT to less than 0.3 μT to meet the magnetic field requirement of polarization gradients cooling of atoms.

Keywords:  laser cooling      space cold atom clock      magnetic field compensation  
Received:  25 February 2016      Revised:  05 April 2016      Published:  05 July 2016
PACS:  32.30.Bv (Radio-frequency, microwave, and infrared spectra)  
Fund: 

Project supported by the Ministry of Science and Technology of China (Grant No. 2013YQ09094304), the Youth Innovation Promotion Association, Chinese Academy of Sciences, and the National Natural Science Foundation of China (Grant Nos. 11034008 and 11274324).

Corresponding Authors:  Desheng Lü, Liang Liu     E-mail:  dslv@siom.ac.cn;liang.liu@siom.ac.cn

Cite this article: 

Lin Li(李琳), Jingwei Ji(吉经纬), Wei Ren(任伟), Xin Zhao(赵鑫), Xiangkai Peng(彭向凯), Jingfeng Xiang(项静峰), Desheng Lü(吕德胜), Liang Liu(刘亮) Automatic compensation of magnetic field for a rubidium space cold atom clock 2016 Chin. Phys. B 25 073201

[1] Guéna J, Abgrall M, Rovera D, Laurent PH, Chupin B, Lours M, Santarelli G, Rosenbusch P, Tobar M E, Li R X, Gibble K, Clairon A and Bize S 2012 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59 391
[2] Ovchinnikov Y and Marra G 2011 Metrologia 48 87
[3] Levi F, Calonico D, Calosso C E, Godone A, Micalizio S and Costanzo G A 2014 Metrologia 51 270
[4] Gerginov V, Nemitz N, Weyers S, Schroder R, Griebsch D and Wynands R 2010 Metrologia 47 65
[5] Laurent P H, Abgrall M, Jentsch C H, Lemonde P, Santarelli G, Clairon A, Maksimovic I, Bize S, Salomon C H, Blonde D, Vega J F, Grosjean O, Pocard F, Saccoccio M, Chaubet M, Ladiette N, Guillet L, Zenone I, Delaroche C H and Sirmain C H 2006 Appl. Phys. B 84 683
[6] Lü D S, Liu L and Wang Y Z 2011 Manned Spaceflight 1 47
[7] Vanier J and Audoin C 1989 The Quantum Physics of Atomic Frequency Standards (Adam Higger)
[8] Salomon C, Dalibard J, Phillips W D, Clairon A and Guellati S 1990 Europhys. Lett. 12 683
[9] Morić I, Graeve C D, Grosjean O and Laurent P H 2014 Rev. Sci. Instrum. 85 075117
[10] Torre E D 1999 Magnetic Hysteresis (IEEE Press)
[11] Sumner T J, Pendlebury J M and Kof S 1987 J. Phys. D: Appl. Phys. 20 1095
[12] Moric I, Laurent P H, Chatard P, Graeve C D, Thomin S, Christophe V and Grosjean O 2014 Acta Astronautica 102 287
[1] Efficient loading of ultracold sodium atoms in an optical dipole trap from a high power fiber laser
Jing Xu(徐静), Wen-Liang Liu(刘文良), Ning-Xuan Zheng(郑宁宣), Yu-Qing Li(李玉清), Ji-Zhou Wu(武寄洲), Peng Li (李鹏), Yong-Ming Fu(付永明), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2021, 30(3): 033701.
[2] Ground state cooling of an optomechanical resonator with double quantum interference processes
Shuo Zhang(张硕), Tan Li(李坦), Qian-Hen Duan(段乾恒), Jian-Qi Zhang(张建奇), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2021, 30(2): 023701.
[3] Simple and robust method for rapid cooling of 87Rb to quantum degeneracy
Chun-Hua Wei(魏春华), Shu-Hua Yan(颜树华). Chin. Phys. B, 2020, 29(6): 064208.
[4] Enhanced optical molasses cooling for Cs atoms with largely detuned cooling lasers
Di Zhang(张迪), Yu-Qing Li(李玉清), Yun-Fei Wang(王云飞), Yong-Ming Fu(付永明), Peng Li(李鹏), Wen-Liang Liu(刘文良), Ji-Zhou Wu(武寄洲), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(2): 023203.
[5] Two-frequency amplification in a semiconductor tapered amplifier for cold atom experiments
Zhi-Xin Meng(孟至欣), Yu-Hang Li(李宇航), Yan-Ying Feng(冯焱颖). Chin. Phys. B, 2018, 27(9): 094201.
[6] Laser cooling of CH molecule: Insights from ab initio study
Jie Cui(崔洁), Jian-Gang Xu(徐建刚), Jian-Xia Qi(祁建霞), Ge Dou(窦戈), Yun-Guang Zhang(张云光). Chin. Phys. B, 2018, 27(10): 103101.
[7] Quantum feedback cooling of two trapped ions
Shuo Zhang(张硕), Wei Wu(吴伟), Chun-Wang Wu(吴春旺), Feng-Guang Li(李风光), Tan Li(李坦), Xiang Wang(汪翔), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2017, 26(7): 074205.
[8] Development of adjustable permanent magnet Zeeman slowers for optical lattice clocks
Xiao-Hang Zhang(张晓航), Xin-Ye Xu(徐信业). Chin. Phys. B, 2017, 26(5): 053701.
[9] BaF radical: A promising candidate for laser cooling and magneto-optical trapping
Liang Xu(许亮), Bin Wei(魏斌), Yong Xia(夏勇), Lian-Zhong Deng(邓联忠), Jian-Ping Yin(印建平). Chin. Phys. B, 2017, 26(3): 033702.
[10] Tuning the velocity and flux of a low-velocity intense source of cold atomic beam
Shu Chen(陈姝), Ying-Ying Li(李营营), Xue-Shu Yan(颜学术), Hong-Bo Xue(薛洪波), Yan-Ying Feng(冯焱颖). Chin. Phys. B, 2017, 26(11): 113703.
[11] Microwave-mediated magneto-optical trap for polar molecules
Dizhou Xie(谢笛舟), Wenhao Bu(卜文浩), Bo Yan(颜波). Chin. Phys. B, 2016, 25(5): 053701.
[12] Ab initio study on the electronic states and laser cooling of AlCl and AlBr
Rong Yang(杨荣), Bin Tang(唐斌), Tao Gao(高涛). Chin. Phys. B, 2016, 25(4): 043101.
[13] Micro-Gal level gravity measurements with cold atom interferometry
Zhou Min-Kang, Duan Xiao-Chun, Chen Le-Le, Luo Qin, Xu Yao-Yao, Hu Zhong-Kun. Chin. Phys. B, 2015, 24(5): 050401.
[14] Temperature and number evolution of cold cesium atoms inside a wall-coated glass cell
Huang Jia-Qiang, Zhang Jian-Wei, Wang Shi-Guang, Wang Zheng-Bo, Wang Li-Jun. Chin. Phys. B, 2015, 24(11): 113701.
[15] Off-resonant double-resonance optical-pumping spectra and their application in a multiphoton cesium magneto-optical trap
Yang Bao-Dong, He Jun, Wang Jun-Min. Chin. Phys. B, 2014, 23(5): 054205.
No Suggested Reading articles found!