Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(4): 040203    DOI: 10.1088/1674-1056/25/4/040203
GENERAL Prev   Next  

Two-dimensional fracture analysis of piezoelectric material based on the scaled boundary node method

Shen-Shen Chen(陈莘莘), Juan Wang(王娟), Qing-Hua Li(李庆华)
School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, China
Abstract  

A scaled boundary node method (SBNM) is developed for two-dimensional fracture analysis of piezoelectric material, which allows the stress and electric displacement intensity factors to be calculated directly and accurately. As a boundary-type meshless method, the SBNM employs the moving Kriging (MK) interpolation technique to an approximate unknown field in the circumferential direction and therefore only a set of scattered nodes are required to discretize the boundary. As the shape functions satisfy Kronecker delta property, no special techniques are required to impose the essential boundary conditions. In the radial direction, the SBNM seeks analytical solutions by making use of analytical techniques available to solve ordinary differential equations. Numerical examples are investigated and satisfactory solutions are obtained, which validates the accuracy and simplicity of the proposed approach.

Keywords:  fracture mechanics      meshless method      semi-analytical      piezoelectric materials  
Received:  27 September 2015      Revised:  07 December 2015      Published:  05 April 2016
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
  46.25.-y (Static elasticity)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11462006 and 21466012), the Foundation of Jiangxi Provincial Educational Committee, China (Grant No. KJLD14041), and the Foundation of East China Jiaotong University, China (Grant No. 09130020).

Corresponding Authors:  Shen-Shen Chen     E-mail:  chenshenshen@tsinghua.org.cn

Cite this article: 

Shen-Shen Chen(陈莘莘), Juan Wang(王娟), Qing-Hua Li(李庆华) Two-dimensional fracture analysis of piezoelectric material based on the scaled boundary node method 2016 Chin. Phys. B 25 040203

[1] Sheng N, Sze K Y and Cheung Y K 2006 Int. J. Numer. Method Eng. 65 2113
[2] Pak Y E 1992 Int. J. Fract. 54 79
[3] Gao C F and Fan W Y 1999 Int. J. Solids Struct. 36 2527
[4] Kumar S and Singh R 1996 Acta Mater. 44 173
[5] Gruebner O, Kamlah M and Munz D 2003 Eng. Frac. Mech. 70 1399
[6] Pan E 1999 Eng. Anal. Bound. Elem. 23 67
[7] Rajapakse R K N D and Xu X L 2001 Eng. Anal. Bound. Elem. 25 771
[8] Garcia-Sanchez F, Saez A and Dominguez J 2005 Comput. Struct. 83 804
[9] Sheng N and Sze K Y 2006 Comput. Mech. 37 381
[10] Bui T Q and Zhang C Z 2012 Comput. Mater. Sci. 62 243
[11] Liu P, Yu T T, Bui T Q and Zhang C Z 2013 Comput. Mater. Sci. 69 542
[12] Li C, Man H, Song C M and Gao W 2013 Eng. Fract. Mech. 97 52
[13] Li C, Man H, Song C M and Gao W 2013 Compos. Struct. 101 191
[14] Song C and Wolf J 1997 Comput. Methods Appl. Mech. Eng. 147 329
[15] Cheng Y M, Peng M J and Li J H 2005 Acta Mech. Sin. 37 719 (in Chinese)
[16] Mukherjee Y X and Mukherjee S 1997 Int. J. Numer. Method Eng. 40 797
[17] Kothnur V S, Mukherjee S and Mukherjee Y X 1999 Int. J. Solids Struc. 36 1129
[18] Zhang J M, Qin X Y, Han X and Li G Y 2009 Int. J. Numer. Method Eng. 80 320
[19] Zhang J M, Tanaka M and Matsumoto T 2004 Int. J. Numer. Method Eng. 59 1147
[20] Shrivastava V and Aluru N R 2004 Int. J. Numer. Method Eng. 59 2019
[21] Peng M J and Cheng Y M 2009 Eng. Anal. Bound. Elem. 33 77
[22] Cheng Y M and Peng M J 2005 Sci. China-Ser. G Phys., Mech. Astron. 48 641
[23] Li X L 2011 Int. J. Numer. Method Eng. 88 442
[24] Chen S S, Li Q H and Liu Y H 2012 Chin. Phys. B 21 110207
[25] Gu L 2003 Int. J. Numer. Method Eng. 56 1
[26] Zheng B J and Dai B D 2011 Appl. Math. Comput. 218 563
[27] Song C 2004 Comput. Methods Appl. Mech. Eng. 193 2325
[28] Deeks A J and Wolf J P 2002 Comput. Mech. 28 489
[29] Wang B L and Mai Y W 2002 Int. J. Solids Struc. 39 4501
[1] Improved reproducing kernel particle method for piezoelectric materials
Ji-Chao Ma(马吉超), Gao-Feng Wei(魏高峰), Dan-Dan Liu(刘丹丹). Chin. Phys. B, 2018, 27(1): 010201.
[2] Topology optimization using the improved element-free Galerkin method for elasticity
Yi Wu(吴意), Yong-Qi Ma(马永其), Wei Feng(冯伟), Yu-Min Cheng(程玉民). Chin. Phys. B, 2017, 26(8): 080203.
[3] Meshless analysis of an improved element-free Galerkin method for linear and nonlinear elliptic problems
Yao-Zong Tang(唐耀宗), Xiao-Lin Li(李小林). Chin. Phys. B, 2017, 26(3): 030203.
[4] Solving unsteady Schrödinger equation using the improved element-free Galerkin method
Rong-Jun Cheng(程荣军) and Yu-Min Cheng(程玉民). Chin. Phys. B, 2016, 25(2): 020203.
[5] Investigations of thickness-shear mode elastic constant and damping of shunted piezoelectric materials with a coupling resonator
Ji-Ying Hu(胡吉英), Zhao-Hui Li(李朝晖), Yang Sun(孙阳), Qi-Hu Li(李启虎). Chin. Phys. B, 2016, 25(12): 127701.
[6] Hybrid natural element method for large deformation elastoplasticity problems
Ma Yong-Qi, Zhou Yan-Kai. Chin. Phys. B, 2015, 24(3): 030204.
[7] Closed-form solution of mid-potential between two parallel charged plates with more extensive application
Shang Xiang-Yu, Yang Chen, Zhou Guo-Qing. Chin. Phys. B, 2015, 24(10): 108203.
[8] Analysis of elastoplasticity problems using an improved complex variable element-free Galerkin method
Cheng Yu-Min, Liu Chao, Bai Fu-Nong, Peng Miao-Juan. Chin. Phys. B, 2015, 24(10): 100202.
[9] Hybrid natural element method for viscoelasticity problems
Zhou Yan-Kai, Ma Yong-Qi, Dong Yi, Feng Wei. Chin. Phys. B, 2015, 24(1): 010204.
[10] A meshless algorithm with moving least square approximations for elliptic Signorini problems
Wang Yan-Chong, Li Xiao-Lin. Chin. Phys. B, 2014, 23(9): 090202.
[11] A meshless method based on moving Kriging interpolation for a two-dimensional time-fractional diffusion equation
Ge Hong-Xia, Cheng Rong-Jun. Chin. Phys. B, 2014, 23(4): 040203.
[12] Analysis of variable coefficient advection–diffusion problems via complex variable reproducing kernel particle method
Weng Yun-Jie, Cheng Yu-Min. Chin. Phys. B, 2013, 22(9): 090204.
[13] A complex variable meshless local Petrov-Galerkin method for transient heat conduction problems
Wang Qi-Fang, Dai Bao-Dong, Li Zhen-Feng. Chin. Phys. B, 2013, 22(8): 080203.
[14] A meshless Galerkin method with moving least square approximations for infinite elastic solids
Li Xiao-Lin, Li Shu-Ling. Chin. Phys. B, 2013, 22(8): 080204.
[15] Analysis of the generalized Camassa and Holm equation with the improved element-free Galerkin method
Cheng Rong-Jun, Wei Qi. Chin. Phys. B, 2013, 22(6): 060209.
No Suggested Reading articles found!