Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 027501    DOI: 10.1088/1674-1056/25/2/027501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetic entropy change and magnetic properties of LaFe11.5Si1.5 after controlling the Curie temperature by partial substitution of Mn and hydrogenation

Bin Fu(傅斌)1 and Jie Han(韩洁)2
1. School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China;
2. College of Science, Tianjin University of Technology, Tianjin 300384, China
Abstract  

Magnetic properties and magnetic entropy changes of La(Fe1-xMnx)11.5Si1.5Hy compounds are investigated. Their Curie temperatures are adjusted to room temperature by partial Mn substitution for Fe and hydrogen absorption in 1-atm (1 atm=1.01325×105 Pa) hydrogen gas. Under a field change from 0 T to 2 T, the maximum magnetic entropy change for La(Fe0.99Mn0.01)11.5Si1.5H1.61 is -11.5 J/kg. The suitable Curie temperature and large value of Δ Sm make it an attractive potential candidate for the room temperature magnetic refrigeration application.

Keywords:  magnetic refrigeration      Curie temperature (TC)      hydrogen absorption      magnetocaloric effect (MCE)     
Received:  22 August 2015      Published:  05 February 2016
PACS:  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
  75.50.-y (Studies of specific magnetic materials)  
Fund: 

Projct supported by the Science and Technology Development Fund of Higher Education of Tianjin, China (Grant No. 20130301) and the Tianjin Research Program of Application Foundation and Advanced Technology, China (Grant No. 14JCQNJC4000).

Corresponding Authors:  Bin Fu     E-mail:  fubin80@126.com

Cite this article: 

Bin Fu(傅斌) and Jie Han(韩洁) Magnetic entropy change and magnetic properties of LaFe11.5Si1.5 after controlling the Curie temperature by partial substitution of Mn and hydrogenation 2016 Chin. Phys. B 25 027501

[1] Chen X, Chen Y G, Tang Y B and Xiao D Q 2014 J. Magn. Magn. Mater. 368 155
[2] Shen B G, Hu F X, Dong Q Y and Sun J R 2013 Chin. Phys. B 22 017502
[3] Zimm C, Boeder A, Chell J, Sternberg A, Fujita A, Fujieda S and Fukamichi K 2006 Int. J. Refrig. 29 1302
[4] Fujita A, Koiwai S, Fujieda S, Fukamichi K, Kobayashi T, Tsuji H, Kaji S and Saito A T 2007 Jpn. J. Appl. Phys. 46 154
[5] Bao L H, Wei W, Fan W D and Tegus O 2014 J. Alloys Compd. 589 416
[6] Hu F X, Shen B G, Sun J R, Chen Z H, Rao G H and Zhang X X 2001 Appl. Phys. Lett. 78 3675
[7] Fujieda S, Fujita A, Kawamoto N and Fukamichi K 2002 Appl. Phys. Lett. 81 1276
[8] Fujita A, Fujieda S, Hasegawa Y and Fukamichi K 2003 Phys. Rev. B 67 104416
[9] Fujita A, Akamatsu Y and Fukamichi K 1999 J. Appl. Phys. 85 4756
[10] Hu F X, Ilyn M, Tishin A M, Sun J R, Wang G J, Chen Y F, Wang F, Cheng Z H and Shen B G 2003 J. Appl. Phys. 93 5503
[11] Fujieda S, Fujita A, Fukamichi K, Yamazaki Y and Iijima Y 2001 Appl. Phys. Lett. 79 653
[12] Mandal K, Pal D, Gutfleisch O, Kerschl P and Müller K H 2007 J. Appl. Phys. 102 053906
[13] He C, Zhang M X, Shao Y Y, Dong J D, Yan A R and Liu J 2015 Chin. Phys. B 24 077503
[14] Wang Z C, He L H, Wang F W, Cuevas F, Latroche M and Shen J 2011 Chin. Phys. B 20 067502
[15] Fukamichi K, Fujita A and Fujieda S 2006 J. Alloys Compd. 408-412 307
[16] Zhang D K, Zhao J L, Zhang H G, and Yue M 2014 Acta Phys. Sin. 63 197501 (in Chinese)
[17] Wang F, Chen Y F, Wang G J and Shen B G 2003 J. Phys. D: Appl. Phys. 36 1
[18] Wang F, Zhang J, Chen Y f, Wang G J, Sun J R, Zhang S Y and Shen B G 2004 Phys. Rev. B 69 094424
[19] Wang F, Chen Y F, Wang G J, Sun J R and Shen B G 2003 Chin. Phys. 12 911
[20] Fujieda S, Fujita A, Kawamoto N and Fukamichi K 2006 Appl. Phys. Lett. 89 062504
[21] Fu B, Long Y, Shi P J, Ma T, Bao B, Yan A R and Chen R J 2009 Chin. Phys. B 18 4506
[22] Yamada H 1993 Phys. Rev. B 47 11211
[23] Saito H, Yokoyama T and Fukamichi K 1997 J. Phys.: Condens. Matter 9 9333
[24] Pecharsky V K and Gschneidner Jr K A 1999 J. Magn. Magn. Mater. 200 44
[1] Table-like shape magnetocaloric effect and large refrigerant capacity in dual-phase HoNi/HoNi2 composite
Dan Guo(郭丹), Yikun Zhang(张义坤), Yaming Wang(王雅鸣), Jiang Wang(王江), Zhongming Ren(任忠鸣). Chin. Phys. B, 2020, 29(10): 107502.
[2] Machine learning technique for prediction of magnetocaloric effect in La(Fe, Si/Al)13-based materials
Bo Zhang(张博), Xin-Qi Zheng(郑新奇), Tong-Yun Zhao(赵同云), Feng-Xia Hu(胡凤霞), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2018, 27(6): 067503.
[3] Effects of Pr substitution on the hydrogenating process and magnetocaloric properties of La1-xPrxFe11.4Si1.6Hy hydrides
Lei Xu(许磊), Jin-Liang Zhao(赵金良), Jing-Jie Yang(杨静洁), Hong-Guo Zhang(张红国), Dan-Min Liu(刘丹敏), Ming Yue(岳明), Yi-Jian Jang(蒋毅坚). Chin. Phys. B, 2017, 26(6): 067502.
[4] Anomalous microstructure and magnetocaloric properties in off-stoichiometric La–Fe–Si and its hydride
He Chun, Zhang Ming-Xiao, Shao Yan-Yan, Dong Jing-Du, Yan A-Ru, Liu Jian. Chin. Phys. B, 2015, 24(7): 077503.
[5] Magnetic hysteresis and refrigeration capacity of Ni–Mn–Ga alloys near Martensitic transformation
Fu Bin, Long Yi, Duan Jing-Fang, Wang Chao-Lun, Chang Yong-Qin, Ye Rong-Chang, Wu Guang-Heng. Chin. Phys. B, 2010, 19(9): 097501.
[6] Hydrogen absorption of LaFe11.5Si1.5 compound under low hydrogen gas pressure
Fu Bin, Long Yi, Shi Pu-Ji, Ma Tao, Bao Bo, Yan A-Ru, Chen Ren-Jie. Chin. Phys. B, 2009, 18(10): 4506-4510.
No Suggested Reading articles found!