Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 108904    DOI: 10.1088/1674-1056/25/10/108904

Subtle role of latency for information diffusion in online social networks

Fei Xiong(熊菲)1,2, Xi-Meng Wang(王夕萌)1,2, Jun-Jun Cheng(程军军)3
1 School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China;
2 Key Laboratory of Communication and Information Systems, Beijing Municipal Commission of Education, Beijing Jiaotong University, Beijing 100044, China;
3 China Information Technology Security Evaluation Center, Beijing 100085, China
Abstract  Information diffusion in online social networks is induced by the event of forwarding information for users, and latency exists widely in user spreading behaviors. Little work has been done to reveal the effect of latency on the diffusion process. In this paper, we propose a propagation model in which nodes may suspend their spreading actions for a waiting period of stochastic length. These latent nodes may recover their activity again. Meanwhile, the mechanism of forwarding information is also introduced into the diffusion model. Mean-field analysis and numerical simulations indicate that our model has three nontrivial results. First, the spreading threshold does not correlate with latency in neither homogeneous nor heterogeneous networks, but depends on the spreading and refractory parameter. Furthermore, latency affects the diffusion process and changes the infection scale. A large or small latency parameter leads to a larger final diffusion extent, but the intrinsic dynamics is different. Large latency implies forwarding information rapidly, while small latency prevents nodes from dropping out of interactions. In addition, the betweenness is a better descriptor to identify influential nodes in the model with latency, compared with the coreness and degree. These results are helpful in understanding some collective phenomena of the diffusion process and taking measures to restrain a rumor in social networks.
Keywords:  information diffusion      node latency      user behavior      complex networks  
Received:  14 April 2016      Revised:  19 May 2016      Published:  05 October 2016
PACS:  89.75.-k (Complex systems)  
  87.23.Ge (Dynamics of social systems)  
  89.75.Fb (Structures and organization in complex systems)  
  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61401015 and 61271308), the Fundamental Research Funds for the Central Universities, China (Grant No. 2014JBM018), and the Talent Fund of Beijing Jiaotong University, China (Grant No. 2015RC013).
Corresponding Authors:  Fei Xiong     E-mail:

Cite this article: 

Fei Xiong(熊菲), Xi-Meng Wang(王夕萌), Jun-Jun Cheng(程军军) Subtle role of latency for information diffusion in online social networks 2016 Chin. Phys. B 25 108904

[1] Barthélemy M, Barrat A, Pastor-Satorras R and Vespignani A 2004 Phys. Rev. Lett. 92 178701
[2] Nekoveea M, Morenob Y, Bianconic G and Marsili M 2007 Physica A 374 457
[3] Lu Y, Jiang G and Song Y 2012 Chin. Phys. B 21 100207
[4] Genois M, Vestergaard C L, Cattuto C and Barrat A 2015 Nat. Commun. 6 8860
[5] Gong Y, Song Y and Jiang G 2012 Chin. Phys. B 21 010205
[6] Reppas A I, De Decker Y and Siettos C I 2012 J. Stat. Mech. 2012 P08020
[7] Zhou T, Liu J, Bai W, Chen G and Wang B 2006 Phys. Rev. E 74 056109
[8] Barthelemy M, Barrat A, Pastor-Satorras R and Vespignani A 2002 Phys. Rev. Lett. 92 178701
[9] Parshani R, Carmi S and Havlin S 2010 Phys. Rev. Lett. 104 258701
[10] Newman M E J 2002 Phys. Rev. E 66 016128
[11] Silva R D and Fernandes H A 2015 J. Stat. Mech. 2015 P06011
[12] Wang Y, Cao J D, Alofi A, AL-Mazrooei A and Elaiw A 2015 Physica A 437 75
[13] Castellano C, Fortunato S and Loreto V 2009 Rev. Mod. Phys. 81 591
[14] Fotouhi B and Shirkoohi M K 2016 Phys. Rev. E 93 012301
[15] Liu C, Xie J, Chen H, Zhang H and Tang M 2015 Chaos 25 103111
[16] Li W, Tang S, Fang W, Guo Q, Zhang X and Zheng Z 2015 Phys. Rev. E 92 042810
[17] Yagan O, Qian D, Zhang J and Cochran D 2013 IEEE J. Sel. Area Comm. 31 1038
[18] Nematzadeh A, Ferrara E, Flammini A and Ahn Y Y 2014 Phys. Rev. Lett. 113 088701
[19] Song B, Jiang G, Song Y and Xia L 2015 Chin. Phys. B 24 100101
[20] Hu Q, Zhang Y, Xu X, Xing C, Chen C and Chen X 2015 Acta Phys. Sin. 64 190101 (in Chinese)
[21] Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E and Makse H A 2010 Nat. Phys. 6 888
[22] Borge-Holthoefer J and Moreno Y 2012 Phys. Rev E 85 026116
[23] Lu Z, Wen Y, Zhang W, Zheng Q and Cao G 2015 IEEE T. Mobile Comput. 15 1292
[24] Lu Z, Wen Y and Cao G 2014 Proceedings of 33rd Annual IEEE International Conference on Computer Communications, 2014, Toronto, Canada, p. 1932
[25] Li Y, Qian M, Jin D, Hui P and Vasilakos A V 2015 Inform. Sci. 293 383
[26] Centola D 2010 Science 329 1194
[27] Zhao J, Wu J and Xu K 2010 Phys. Rev. E 82 016105
[28] Hu H, Wen Y, Chua T and Li X 2014 IEEE Access Journal 2 652
[29] Wen S, Haghighi M S, Chen C, Xiang Y, Zhou W and Jia W 2015 IEEE T. Comput. 64 640
[30] Wen S, Jiang J J, Xiang Y, Yu S, Zhou W L and Jia W J 2014 IEEE T. Parall. Distr. 25 3306
[31] Jiang C, Chen Y and Liu K J 2014 IEEE T. Signal Proces. 62 4573
[32] Lambiotte R, Saramaki J and Blondel V D 2009 Phys. Rev. E 79 046107
[33] Goldenberg J, Libai B and Muller E 2001 Market. Lett. 12 211
[1] Influential nodes identification in complex networks based on global and local information
Yuan-Zhi Yang(杨远志), Min Hu(胡敏), Tai-Yu Huang(黄泰愚). Chin. Phys. B, 2020, 29(8): 088903.
[2] Asynchronism of the spreading dynamics underlying the bursty pattern
Tong Wang(王童), Ming-Yang Zhou(周明洋), Zhong-Qian Fu(付忠谦). Chin. Phys. B, 2020, 29(5): 058901.
[3] Identifying influential spreaders in complex networks based on entropy weight method and gravity law
Xiao-Li Yan(闫小丽), Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni(倪顺江). Chin. Phys. B, 2020, 29(4): 048902.
[4] Modeling and analysis of the ocean dynamic with Gaussian complex network
Xin Sun(孙鑫), Yongbo Yu(于勇波), Yuting Yang(杨玉婷), Junyu Dong(董军宇), Christian Böhm(陈学恩), Xueen Chen. Chin. Phys. B, 2020, 29(10): 108901.
[5] Pyramid scheme model for consumption rebate frauds
Yong Shi(石勇), Bo Li(李博), Wen Long(龙文). Chin. Phys. B, 2019, 28(7): 078901.
[6] Theoretical analyses of stock correlations affected by subprime crisis and total assets: Network properties and corresponding physical mechanisms
Shi-Zhao Zhu(朱世钊), Yu-Qing Wang(王玉青), Bing-Hong Wang(汪秉宏). Chin. Phys. B, 2019, 28(10): 108901.
[7] Coordinated chaos control of urban expressway based on synchronization of complex networks
Ming-bao Pang(庞明宝), Yu-man Huang(黄玉满). Chin. Phys. B, 2018, 27(11): 118902.
[8] Detecting overlapping communities based on vital nodes in complex networks
Xingyuan Wang(王兴元), Yu Wang(王宇), Xiaomeng Qin(秦小蒙), Rui Li(李睿), Justine Eustace. Chin. Phys. B, 2018, 27(10): 100504.
[9] Dominant phase-advanced driving analysis of self-sustained oscillations in biological networks
Zhi-gang Zheng(郑志刚), Yu Qian(钱郁). Chin. Phys. B, 2018, 27(1): 018901.
[10] Ranking important nodes in complex networks by simulated annealing
Yu Sun(孙昱), Pei-Yang Yao(姚佩阳), Lu-Jun Wan(万路军), Jian Shen(申健), Yun Zhong(钟赟). Chin. Phys. B, 2017, 26(2): 020201.
[11] Empirical topological investigation of practical supply chains based on complex networks
Hao Liao(廖好), Jing Shen(沈婧), Xing-Tong Wu(吴兴桐), Bo-Kui Chen(陈博奎), Mingyang Zhou(周明洋). Chin. Phys. B, 2017, 26(11): 110505.
[12] An improved genetic algorithm with dynamic topology
Kai-Quan Cai(蔡开泉), Yan-Wu Tang(唐焱武), Xue-Jun Zhang(张学军), Xiang-Min Guan(管祥民). Chin. Phys. B, 2016, 25(12): 128904.
[13] Synchronization of Markovian jumping complex networks with event-triggered control
Shao Hao-Yu, Hu Ai-Hua, Liu Dan. Chin. Phys. B, 2015, 24(9): 098902.
[14] Load-redistribution strategy based on time-varying load against cascading failure of complex network
Liu Jun, Xiong Qing-Yu, Shi Xin, Wang Kai, Shi Wei-Ren. Chin. Phys. B, 2015, 24(7): 076401.
[15] Degree distribution and robustness of cooperativecommunication network with scale-free model
Wang Jian-Rong, Wang Jian-Ping, He Zhen, Xu Hai-Tao. Chin. Phys. B, 2015, 24(6): 060101.
No Suggested Reading articles found!