Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 105202    DOI: 10.1088/1674-1056/25/10/105202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

K—P—Burgers equation in negative ion-rich relativistic dusty plasma including the effect of kinematic viscosity

A N Dev1, M K Deka2, J Sarma3, D Saikia4, N C Adhikary4
1 Department of Mathematics, Siksha ‘O' Anusandhan University, Khandagiri, Bhubaneswar-751030, Odisha, India;
2 Department of Applied Sciences, Institute of Science and Technology, Gauhati University, Guwahati 781014, Assam, India;
3 Department of Mathematics, R G Baruah College, Guwahati-781025, Assam, India;
4 Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati-781035, Assam, India
Abstract  The stationary solution is obtained for the K-P-Burgers equation that describes the nonlinear propagations of dust ion acoustic waves in a multi-component, collisionless, un-magnetized relativistic dusty plasma consisting of electrons, positive and negative ions in the presence of charged massive dust grains. Here, the Kadomtsev-Petviashvili (K-P) equation, three-dimensional (3D) Burgers equation, and K-P-Burgers equations are derived by using the reductive perturbation method including the effects of viscosity of plasma fluid, thermal energy, ion density, and ion temperature on the structure of a dust ion acoustic shock wave (DIASW). The K-P equation predictes the existences of stationary small amplitude solitary wave, whereas the K-P-Burgers equation in the weakly relativistic regime describes the evolution of shock-like structures in such a multi-ion dusty plasma.
Keywords:  K-P-Burgers equation      negative ion      relativistic plasma      reductive perturbation method     
Received:  23 January 2016      Published:  05 October 2016
PACS:  52.27.Lw (Dusty or complex plasmas; plasma crystals)  
  52.35.Fp (Electrostatic waves and oscillations (e.g., ion-acoustic waves))  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
  52.35.Tc (Shock waves and discontinuities)  
Corresponding Authors:  N C Adhikary     E-mail:  nirab_iasst@yahoo.co.in

Cite this article: 

A N Dev, M K Deka, J Sarma, D Saikia, N C Adhikary K—P—Burgers equation in negative ion-rich relativistic dusty plasma including the effect of kinematic viscosity 2016 Chin. Phys. B 25 105202

[1] Shukla P K and Silin V P 1992 Phys. Scr. 45 508
[2] Deka M K, Adhikary N C, Misra A P, Bailung H and Nakamura Y 2012 Phys. Plasmas 19 103704
[3] Adhikary N C 2012 Phys. Lett. A 376 1460
[4] Misra A P and Adhikary N C 2013 Phys. Plasmas 20 102309
[5] Barkan A, Merlino R L and Angelo N D' 1995 Phys. Plasmas 2 3563
[6] Shahmansouri M 2012 Chin. Phys. Lett. 29 105201
[7] Liu T H, Hao Z Q, Gao X, Liu Z H and Lin J Q 2014 Chin. Phys. B 23 085203
[8] El-Labany S K, El-Shamy E F, El-Taibany W F and Zedan N A 2015 Chin. Phys. B 24 035201
[9] He M Q, Dong Q L, Sheng Z M and Zhang J 2015 Acta Phys. Sin. 64 105202 (in Chinese)
[10] Farokhi B and Hameditabar A 2012 Chin. Phys. Lett. 29 025204
[11] Rehman Hafeez Ur 2012 Chin. Phys. Lett. 29 065201
[12] Farokhi B and Eghbali M 2012 Chin. Phys. Lett. 29 075202
[13] Homann A, Melzer A, Peters S and Piel A 1997 Phys. Rev. E 56 7138
[14] Mendis D A and Rosenberg M 1994 Ann. Rev. Astron. Astrophys. 32 419
[15] Northrop T G 1992 Phys. Scr. 45 475
[16] Huang F, Liu Y H, Chen Z Y, Wang L and Ye M F 2013 Chin. Phys. Lett. 30 115201
[17] Gong W H, Zhang Y L, Feng F, Liu F C and He Y F 2015 Acta Phys. Sin. 64 195202 (in Chinese)
[18] Vette J I 1970 Particle and Fields in the Magnetosphere, ed. B M Mc Cormac (The Netherlands) p. 305
[19] Arons J 1979 Space Sci. Rev. 24 437
[20] Grabbe C 1989 J. Geophys. Res. 94 17299
[21] El-Labany S K 1993 J. Plasma Phys. 50 495
[22] Lu G, Liu Y, Zheng S, Wang Y, Yu W and Yu M Y 2010 Astrophys. Space Sci. 330 73
[23] Washimi H and Taniuti T 1996 Phys. Rev. Lett. 17 996
[24] Alam M S, Masud M M and Mamun A A 2013 Chin. Phys. B 22 0115202
[25] Das G C and Paul S N 1985 Phys. Fluids 28 823
[26] Kuehl H H and Zhang C Y 1991 Phys. Fluids B 3 26
[27] Malik H K, Singh S and Dahiya R P 1994 Phys. Plasmas 1 1137
[28] Malik H K 1996 Phys. Rev. E 54 5844
[29] Franz J R, Kintner P M and Pickett J S 1998 Geophys. Res. Lett. 25 2041
[30] Duan W S, Shi Y R and Hong X R 2004 Phys. Lett. A 323 89
[31] Duan W S 2003 Chin. Phys. 12 479
[32] Duan W S 2002 Commun. Theor. Phys. 38 660
[33] Kadomtsev B B and Petviashvili V I 1970 Sov. Phys. Dokl. 15 539
[34] Infeld E, Rowlands G and Hen M 1978 Acta Phys. Pol. A 54 131
[35] Rehman H U 2013 Chin. Phys. B 22 035202
[36] Singh S and Honzawa T 1993 Phys. Fluids B 5 2093
[37] Nejoh Y 1987 J. Plasma Phys. 38 439
[38] Singh S and Honzawa T 1993 Phys. Fluids B 5 2093
[39] Kalita B C, Barman S N and Goswami G 1996 Phys. Plasmas 3 145
[40] Bhattacharyya B 1983 Phys. Rev. A 27 568
[41] Kaw P K and Dawson J 1970 Phys. Fluids 13 472
[42] Shukla P K, Yu M Y and Tsintsadze N L 1984 Phys. Fluids 27 327
[43] Han J N, Du S L and Duan W S 2008 Phys. Plasmas 15 112104
[44] Malik H K 1999 Physica D 125 295
[45] Pakzad H R 2008 J. Physics: Conf. Ser. 96 012146
[1] Numerical simulation on modulational instability of ion-acoustic waves in plasma
Yi-Rong Ma(马艺荣), Lie-Juan Li(李烈娟), Wen-Shan Duan(段文山). Chin. Phys. B, 2019, 28(2): 025201.
[2] Current loss of magnetically insulated coaxial diode with cathode negative ion
Dan-Ni Zhu(朱丹妮), Jun Zhang(张军), Hui-Huang Zhong(钟辉煌), Jing-Ming Gao(高景明), Zhen Bai(白珍). Chin. Phys. B, 2018, 27(2): 020501.
[3] Practical 2.45-GHz microwave-driven Cs-free H- ion source developed at Peking University
Tao Zhang(张滔), Shi-Xiang Peng(彭士香), Wen-Bin Wu(武文斌), Hai-Tao Ren(任海涛), Jing-Feng Zhang(张景丰), Jia-Mei Wen(温佳美), Teng-Hao Ma(马腾昊), Yao-Xiang Jiang(蒋耀湘), Jiang Sun(孙江), Zhi-Yu Guo(郭之虞), Jia-Er Chen(陈佳洱). Chin. Phys. B, 2018, 27(10): 105208.
[4] Soliton excitations in a polariton condensate with defects
Abderahim Mahmoud Belounis, Salem Kessal. Chin. Phys. B, 2018, 27(1): 010307.
[5] Parallel propagating modes and anomalous spatial damping in the ultra-relativistic electron plasma with arbitrary degeneracy
H Farooq, M Sarfraz, Z Iqbal, G Abbas, H A Shah. Chin. Phys. B, 2017, 26(11): 110301.
[6] Landau-Zener model for electron loss of low-energy negative fluorine ions to surface cations during grazing scattering on a LiF (001) surface
Wang Zhou(周旺), Meixiao Zhang(张鹛枭), Lihua Zhou(周利华), Hu Zhou(周虎), Yulong Ma(马玉龙), Yanling Guo(郭艳玲), Lin Chen(陈林), Ximeng Chen(陈熙萌). Chin. Phys. B, 2016, 25(11): 113401.
[7] Effect of Bohm quantum potential in the propagation of ion-acoustic waves in degenerate plasmas
M M Hasan, M A Hossen, A Rafat, A A Mamun. Chin. Phys. B, 2016, 25(10): 105203.
[8] Space–time fractional KdV–Burgers equation for dust acoustic shock waves in dusty plasma with non-thermal ions
Emad K. El-Shewy, Abeer A. Mahmoud, Ashraf M. Tawfik, Essam M. Abulwafa, Ahmed Elgarayhi. Chin. Phys. B, 2014, 23(7): 070505.
[9] Electron flux distributions in photodetachment of HF- near an interface: theoretical imaging method study
Maryam Nawaz Awan, A. Afaq. Chin. Phys. B, 2013, 22(1): 013205.
[10] Landau damping of longitudinal oscillation in ultra- relativistic plasmas with nonextensive distribution
Liu San-Qiu, Xiao-Chang. Chin. Phys. B, 2011, 20(6): 065201.
[11] High accuracy calculation of the hydrogen negative ion in strong magnetic fields
Zhao Ji-Jun, Wang Xiao-Feng, Qiao Hao-Xue. Chin. Phys. B, 2011, 20(5): 053101.
[12] Transmission of 18 keV negative ions Cl- through nanocapillariesin Al2O3 membrane
Lü Xue-Yang, Chen Lin, Chen Xi-Meng, Jia Juan-Juan, Zhou Peng, Zhou Chun-Lin, Qiu Xi-Yu, Shao Jian-Xiong, Cui Ying, Yin Yong-Zhi, Wang Hong-Wei, Ji Ming-Chao. Chin. Phys. B, 2011, 20(1): 013401.
[13] Two-dimensional hydrogen negative ion in a magnetic field
Xie Wen-Fang. Chin. Phys. B, 2004, 13(11): 1806-1810.
No Suggested Reading articles found!