Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 064702    DOI: 10.1088/1674-1056/24/6/064702
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Experimental study on spectrum and multi-scale nature of wall pressure and velocity in turbulent boundary layer

Zheng Xiao-Boa, Jiang Nana b c
a Department of Mechanics, Tianjin University, Tianjin 300072, China;
b Tianjin Key Laboratory of Modern Engineering Mechanics, Tianjin 300072, China;
c The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  When using a miniature single sensor boundary layer probe, the time sequences of the stream-wise velocity in the turbulent boundary layer (TBL) are measured by using a hot wire anemometer. Beneath the fully developed TBL, the wall pressure fluctuations are attained by a microphone mechanism with high spatial resolution. Analysis on the statistic and spectrum properties of velocity and wall pressure reveals the relationship between the wall pressure fluctuation and the energy-containing structure in the buffer layer of the TBL. Wavelet transform shows the multi-scale natures of coherent structures contained in both signals of velocity and pressure. The most intermittent wall pressure scale is associated with the coherent structure in the buffer layer. Meanwhile the most energetic scale of velocity fluctuation at y+= 14 provides a specific frequency f9 ≈ 147 Hz for wall actuating control with Reτ= 996.
Keywords:  multi-scale coherent structures      hot wire anemometry      microphone      wavelet transform  
Received:  22 September 2014      Revised:  27 November 2014      Published:  05 June 2015
PACS:  47.27.De (Coherent structures)  
  47.27.nb (Boundary layer turbulence ?)  
  47.27.Rc (Turbulence control)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2012CB720101 and 2012CB720103) and the National Natural Science Foundation of China (Grant Nos. 11272233, 11332006, and 11411130150).
Corresponding Authors:  Jiang Nan     E-mail:  nanj@tju.edu.cn
About author:  47.27.De; 47.27.nb; 47.27.Rc

Cite this article: 

Zheng Xiao-Bo, Jiang Nan Experimental study on spectrum and multi-scale nature of wall pressure and velocity in turbulent boundary layer 2015 Chin. Phys. B 24 064702

[1] Kravchenko A G, Choi H and Moin P 1993 Phys. Fluids A 5 3307
[2] Orlandi P and Jiménez J 1994 Phys. Fluids 6 634
[3] Wang L and Lu X Y 2011 Chin. Phys. Lett. 28 034703
[4] Lei P F, Zhang J Z, Wang Z P and Chen J H 2014 Acta Phys. Sin. 63 084702 (in Chinese)
[5] Zhang Q H, Yi S H, He Lin, Zhu Y Z and Chen Z 2013 Chin. Phys. B 22 114703
[6] Hu H B, Du P, Huang S H and Wang Y 2013 Chin. Phys. B 22 074703
[7] Han J and Jiang N 2012 Chin. Phys. Lett. 29 074703
[8] Wang W, Guan X L and Jiang N 2014 Chin. Phys. B 23 104703
[9] Choi H, Moin P and Kim J 1994 J. Fluid Mech. 262 75
[10] Kim J 2011 Phil. Trans. R. Soc. A 369 1396
[11] Deng B Q and Xu C X 2012 J. Fluid Mech. 710 234
[12] Du C, Mi J C, Zhou Y and Zhan J 2011 Chin. Phys. Lett. 28 124703
[13] Xue W H, Geng X G, Li J, Li F and Wu J 2010 Chin. Phys. Lett. 27 104703
[14] Wu W T, Hong Y J and Fan B C 2014 Acta Phys. Sin. 63 054702 (in Chinese)
[15] Zhang M, Geng X G, Zhang Y and Wang X N 2012 Acta Phys. Sin. 61 194702 (in Chinese)
[16] Lee C, Kim J and Choi H 1998 J. Fluid Mech. 358 245
[17] Willmarth W W 1956 J. Acoust. Soc. Am. 28 1048
[18] Schewe G 1983 J. Fluid Mech. 134 311
[19] Farabee T M and Casarella M J 1991 Phys. Fluids A 3 2410
[20] Keith W L, Cipolla K M and Furey D 2009 Exp. Fluids 46 181
[21] Camussi R, Guj G and Ragni A 2006 J. Sound Vib. 294 177
[22] Kim J and Sung H J 2006 AIAA Journal 44 1393
[23] Willmarth W W 1975 Ann. Rev. Fluid Mech. 7 13
[24] Bull M K 1996 J. Sound Vib. 190 299
[25] Lee I and Sung H J 2002 J. Fluid Mech. 463 377
[26] Hudy L M, Naguib A M and Humphreys W M 2003 Phys. Fluids 15 706
[27] Liu Y Z, Kang W and Sung H J 2005 Exp. Fluids 38 485
[28] Hutchins N, Nichels T B, Marusic I and Chong M S 2009 J. Fluid Mech. 635 103
[29] Harun Z, Monty J P, Mathis R and Marusic I 2013 J. Fluid Mech. 715 477
[30] Ligrani P M and Bradshaw P 1987 Exp. Fluids 5 407
[31] Pan C, Wang J J and He G S 2012 Chin. Phys. Lett. 29 104704
[32] Chen L, Tang D B and Liu C Q. 2011 Acta Phys. Sin. 60 094702 (in Chinese)
[33] Tang Z Q and Jiang N 2011 Chin. Phys. Lett. 28 054702
[34] Stefes B and Fernholz H H 2004 Eur. J. Mech. B-Fluid 23 303
[35] Monty J P, Hutchins N, Ng H C H, Marusic I and Chong M S 2009 J. Fluid Mech. 632 431
[36] DeGraaff D B and Eaton J K 2000 J. Fluid Mech. 422 319
[37] Smits A J, McKeon B J and Marusic I 2011 Ann. Rev. Fluid Mech. 43 353
[38] Eyink G L 2008 Phys. Fluids 20 125101
[39] Bull M K and Thomas A S W 1976 Phys. Fluids 19 597
[40] Yang S Q and Jiang N 2012 Sci. China Ser. G-Phys. Mech. Astron. 55 1863
[41] del Álamo J C and Jimeńez J 2009 J. Fluid Mech. 640 5
[42] Moin P 2009 J. Fluid Mech. 640 1
[43] Jiménez J 2012 Ann. Rev. Fluid Mech. 44 27
[44] Gravante S P, Naguib A M, Wark C E and Nagib H M 1998 AIAA Journal 36 1808
[45] Bradshaw P 1967 J. Fluid Mech. 30 241
[46] Panton R L and Linebarger J H 1974 J. Fluid Mech. 65 261
[47] Goody M 2004 AIAA Journal 42 1788
[48] Blake W K 1970 J. Fluid Mech. 44 637
[49] Klewicki J C, Priyadarshana P J A and Metzger M M 2008 J. Fluid Mech. 609 195
[50] Volino R J and Simon T W 2000 J. Turbomach. 122 450
[51] Camussi R and Guj G 1997 J. Fluid Mech. 348 177
[52] Guj G and Camussi R 1999 J. Fluid Mech. 382 1
[53] Meneveau C 1991 J. Fluid Mech. 232 469
[54] Mallat S G 1989 IEEE Trans. PAMI 11 674
[55] Farge M 1992 Ann. Rev. Fluid Mech. 24 395
[1] Two-step phase-shifting Fresnel incoherent correlation holography based on discrete wavelet transform
Meng-Ting Wu(武梦婷), Yu Zhang(张雨), Ming-Yu Tang(汤明玉), Zhi-Yong Duan(段智勇), Feng-Ying Ma(马凤英), Yan-Li Du(杜艳丽), Er-Jun Liang(梁二军), and Qiao-Xia Gong(弓巧侠). Chin. Phys. B, 2020, 29(12): 124201.
[2] Wavelet optimization for applying continuous wavelet transform to maternal electrocardiogram component enhancing
Qiong Yu(于琼), Qun Guan(管群), Ping Li(李萍), Tie-Bing Liu(刘铁兵), Jun-Feng Si(司峻峰), Ying Zhao(肇莹), Hong-Xing Liu(刘红星), Yuan-Qing Wang(王元庆). Chin. Phys. B, 2017, 26(11): 118702.
[3] Harmonic signal extraction from noisy chaotic interference based on synchrosqueezed wavelet transform
Wang Xiang-Li, Wang Wen-Bo. Chin. Phys. B, 2015, 24(8): 080203.
[4] Extraction and verification of coherent structures in near-wall turbulence
Hu Hai-Bao, Du Peng, Huang Su-He, Wang Ying. Chin. Phys. B, 2013, 22(7): 074703.
[5] Wavelet transform for Fresnel-transformed mother wavelets
Liu Shu-Guang, Chen Jun-Hua, Fan Hong-Yi. Chin. Phys. B, 2011, 20(12): 120305.
[6] Inversion formula and Parseval theorem for complex continuous wavelet transforms studied by entangled state representation
Hu Li-Yun, Fan Hong-Yi. Chin. Phys. B, 2010, 19(7): 074205.
[7] Network traffic prediction by a wavelet-based combined model
Sun Han-Lin, Jin Yue-Hui, Cui Yi-Dong, Cheng Shi-Duan. Chin. Phys. B, 2009, 18(11): 4760-4768.
[8] Fractional Fourier transform of Cantor sets: further numerical study
Gao Qiong, Liao Tian-He, Cui Yuan-Feng. Chin. Phys. B, 2008, 17(6): 2018-2022.
[9] Blind source separation of multichannel electroencephalogram based on wavelet transform and ICA
You Rong-Yi, Chen Zhong. Chin. Phys. B, 2005, 14(11): 2176-2180.
[10] OPTICAL REALIZATION OF WAVELET TRANSFORM WITH A SINGLE LENS
Wang Qu-quan, Xiong Gui-guang, Li Cheng-fang, Zhang Su-huai, Wang Lin. Chin. Phys. B, 2001, 10(11): 1028-1031.
No Suggested Reading articles found!