Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 047204    DOI: 10.1088/1674-1056/24/4/047204
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Synthesis and electrochemical properties of three-dimensional graphene/polyaniline composites for supercapacitor electrode materials

Zhao Wen, He Da-Wei, Wang Yong-Sheng, Du Xiang, Xin Hao
Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
Abstract  To improve the specific capacitance and rate capability of electrode material for supercapacitors, three-dimensional graphene/polyaniline (3DGN/PANI) composite is prepared via in situ polymerization on GN hydrogel. PANI grows on the GN surface as a thin film, and its content in the composite is controlled by the concentration of reaction monomer. The specific capacitance of 3DGN/PANI composite containing 10 wt% PANI reaches 322.8 F·g-1 at a current density of 1 A·g-1, nearly twice as large as that of the pure 3DGN (162.8 F·g-1). The capacitance of the composite is 307.9 F·g-1 at 30 A·g-1 (maintaining 95.4%), and 89% retention after 500 cycles. This study demonstrates the exciting potential of 3DGN/PANI with high capacitance, excellent rate capability and long cycling life for supercapacitors.
Keywords:  graphene/polyaniline composites      electrochemical property      three-dimensional graphene  
Received:  06 October 2014      Revised:  22 November 2014      Published:  05 April 2015
PACS:  72.80.Tm (Composite materials)  
  82.45.Rr (Electroanalytical chemistry)  
  61.48.Gh (Structure of graphene)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2011CB932700 and 2011CB932703), the National Natural Science Foundation of China (Grant Nos. 61335006, No 61378073, and 61077044), the Beijing Natural Science Foundation, China (Grant No. 4132031), and the Fundamental Research Funds for the Central Universities of Beijing Jiao tong University, China (Grant No. 2014YJS136).
Corresponding Authors:  He Da-Wei     E-mail:  dwhe@bjtu.edu.cn

Cite this article: 

Zhao Wen, He Da-Wei, Wang Yong-Sheng, Du Xiang, Xin Hao Synthesis and electrochemical properties of three-dimensional graphene/polyaniline composites for supercapacitor electrode materials 2015 Chin. Phys. B 24 047204

[1] Sun Y Q, Wu Q and Shi G Q 2011 Energy Environ. Sci. 4 1113
[2] Yan J, Wang Q, Wei T and Fan Z J 2014 Adv. Enery Mater. 4 1300816
[3] Zhou Y, Wang D L, Wang C L, Jin X X and Qiu J S 2014 Chin. Phys. B 23 086101
[4] Li Z P, Men C L, Wang W and Cao Jun 2014 Chin. Phys. B 23 057205
[5] Xu C H, Xu B H, Gu Y, Xiong Z G, Sun J and Zhao X S 2013 Energy Environ. Sci. 6 1388
[6] Li C and Shi G Q 2012 Nanoscale 4 5549
[7] Xu Y X, Lin Z Y, Huang X Q, Liu Y, Huang Y and Duan X F 2013 ACS Nano 7 4042
[8] Xu Y X, Lin Z Y, Huang X Q, Wang Y, Huang Y and Duan X F 2013 Adv. Mater. 25 5779
[9] Yang X Y, Cheng C, Wang Y F, Qiu L and Li D 2013 Science 341 534
[10] Maiti U N, Lim J, Lee K E, Lee W J and Kim S O 2014 Adv. Mater. 26 615
[11] Tai Z X, Yan X B and Xue Q J 2012 J. Electrochem. Soc. 159 A1702
[12] Yu P P, Zhao X, Huang Z L, Li Y Z and Zhang Q H 2014 J. Mater. Chem. A 2 14413
[13] Snook G A, Kao P and Best A S 2011 J. Power Sources 196 1
[14] Wan M X 2009 Macromolecular Rapid Communications 30 963
[15] Wang Y F, Yang X W, Qiu L and Li D 2013 Energy Environ. Sci. 6 477
[16] Yang F, Xu M W, Bao S J, Wei H and Chai H 2014 Electrochimica Acta 137 381
[17] Wu Q, Xu Y X, Yao Z Y, Liu A R and Shi G Q 2010 ACS Nano 4 1963
[18] Liu S, Liu X H, Li Z P, Yang S R and Wang J Q 2011 New J. Chem. 35 369
[19] Hummers Jr W S and Offeman R E 1958 J. Am. Chem. Soc. 80 1339
[20] Chen W F and Yan L F 2011 Nanoscale 3 3132
[21] Al-Mashat L, Shin K, Kalantar-zadeh K, Plessis J D, Han S H, Kojima R W, Kaner R B, Li D, Gou X L, Ippolito S J and Wlodarski W 2010 J. Phys. Chem. C 114 16168
[22] Xu J J, Wang K, Zu S Z, Han B H and Wei Z X 2010 ACS Nano 4 5019
[23] Kumar M, Singh K, Dhawan S K, Tharanikkarasu K, Chung J S, Kong B S, Kim E J and Hur S H 2013 Chem. Eng. J. 231 397
[24] Chen D, Feng H B and Li J H 2012 Chem. Rev. 112 6027
[25] Liu Y C, He D W, Wu H P and Duan J H 2013 Integrated Ferroelectrics 144 118
[26] Gao Z Y, Wang F, Chang J L, Wu D P, Wang X R, Wang X, Xu F, Gao S Y and Jiang K 2014 Electrochimica Acta 133 325
[27] Liu H L, Wang Y, Gou X L, Qi T, Yang J and Ding Y L 2013 Mater. Sci. Eng. B 178 293
[28] Chen S, Duan J J, Tang Y H and Qiao S Z 2013 Chem. Eur. J. 19 7118
[1] Graphene/polyaniline composite sponge of three-dimensional porous network structure as supercapacitor electrode
Jiu-Xing Jiang(姜久兴), Xu-Zhi Zhang(张旭志), Zhen-Hua Wang(王振华), Jian-Jun Xu(许健君). Chin. Phys. B, 2016, 25(4): 048102.
[2] Analysis of composite material interface crack face contact and friction effects using a new node-pairs contact algorithm
Zhong Zhi-Peng, He Yu-Bo, Wan Shui. Chin. Phys. B, 2014, 23(6): 064601.
[3] Fabrication and electrochemical performance of graphene-ZnO nanocomposites
Li Zhen-Peng, Men Chuan-Ling, Wang Wan, Cao Jun. Chin. Phys. B, 2014, 23(5): 057205.
[4] Fabrication and performance optimization of Mn–Zn ferrite/EP composites as microwave absorbing materials
Wang Wen-Jie, Zang Chong-Guang, Jiao Qing-Jie. Chin. Phys. B, 2013, 22(12): 128101.
[5] Carbon materials with quasi-graphene layers: the dielectric, percolation properties and the electronic transport mechanism
Lu Ming-Ming, Yuan Jie, Wen Bo, Liu Jia, Cao Wen-Qiang, Cao Mao-Sheng. Chin. Phys. B, 2013, 22(3): 037701.
[6] Investigation of the free volume and ionic conducting mechanism of poly(ethylene oxide)-LiClO4 polymeric electrolyte by positron annihilating lifetime spectroscopy
Gong Jing, Gong Zhen-Li, Yan Xiao-Li, Gao Shu, Zhang Zhong-Liang, Wang Bo. Chin. Phys. B, 2012, 21(10): 107803.
[7] Electric field distribution and effective nonlinear AC and DC responses of graded cylindrical composites
Ding Xia,Jia Yan-Xia,Wei En-Bo. Chin. Phys. B, 2012, 21(5): 057202.
[8] Effective AC response of nonlinear spherical coated composite
Hao Yan-Hua, ChenXiao-Gang, Hou Rui, Wang Rui. Chin. Phys. B, 2010, 19(6): 067202.
[9] Mg doping reduced full width at half maximum of the near-band-edge emission in Mg doped ZnO films
Long Xue, Li Xaing, Lin Peng-Ting, Cheng Xing-Wang, Liu Ying, Cao Chuan-Bao. Chin. Phys. B, 2010, 19(2): 027202.
[10] Comments on `Enhanced piezoresistivity in Ni-silicone rubber composites'
D. Bloor, A. Graham, P. J.Laughlin, D. Lussey. Chin. Phys. B, 2010, 19(1): 017001.
[11] Effective response of nonlinear cylindrical coated composites under external AC and DC electric field
Shen Yu-Yan, Chen Xiao-Gang, Cui Wei, Hao Yan-Hua, Li Qian-Qian. Chin. Phys. B, 2009, 18(2): 757-762.
[12] Enhanced piezoresistivity in Ni--silicone rubber composites
Chang Fang-Gao, Yang Feng, Wang Shao-Xiang, Zhang Na, Song Gui-Lin. Chin. Phys. B, 2009, 18(2): 652-657.
[13] Simultaneous observation of positive and negative giant magnetoresistances in composite (La0.83Sr0.17MnO3)1-x(ITO)x
Wang Miao, Zhang Ning. Chin. Phys. B, 2006, 15(4): 850-853.
[14] A theory of nonlinear AC response in coated composites
Wei En-Bo, Tian Ji-Wei, Song Jin-Bao. Chin. Phys. B, 2004, 13(3): 388-392.
[15] Effective nonlinear AC response to composite with spherical particles
Chen Xiao-Gang, Liang Fang-Chu, Wei En-Bo. Chin. Phys. B, 2005, 14(6): 1217-1222.
No Suggested Reading articles found!