Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 044208    DOI: 10.1088/1674-1056/24/4/044208

Low threshold fiber taper coupled rare earth ion-doped chalcogenide microsphere laser

Li Chao-Rana, Dai Shi-Xuna, Zhang Qin-Yuanb, Shen Xianga, Wang Xun-Sia, Zhang Pei-Qinga, Lu Lai-Weia, Wu Yue-Haoa, Lv She-Qina
a Laboratory of Infrared Material and Devices, Advanced Technology Reasearch Institute, Ningbo University, Ningbo 315211, China;
b State Key Laboratory of Luminescence Materials and Devices and Institute of Optical Communication Materials, South China University of Technology, Guangzhou 510641, China

We report the applications of a low-cost and environmentally friendly chalcogenide glass, 75GeS2-15Ga2S3-10CsI, in building active microsphere laser oscillators. A silica fiber taper is used as the coupling mechanism. With an 808-nm laser diode as a pump source, we show that a high-Q (~ 6×104) laser mode could be obtained from a 75-μm diameter microsphere that is coupled with a 1.77-μm waist-diameter fiber taper. The threshold of the incident pump power is 1.39 mW, which is considerably lower than those of previously reported free-space coupled chalcogenide microsphere lasers. We also note an apparent enhancement in laser power generated from this chalcogenide microsphere laser.

Keywords:  chalcogenide      microspheres      laser      whispering gallery modes  
Received:  08 July 2014      Revised:  11 October 2014      Published:  05 April 2015
PACS:  42.70.Hj (Laser materials)  
  42.55.Sa (Microcavity and microdisk lasers)  
  42.55.Rz (Doped-insulator lasers and other solid state lasers)  
  42.82.-m (Integrated optics)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 61177087 and 61435009), the National Key Basic Research Program of China (Grant No. 2012CB722703), the Program for Innovative Research Team of Ningbo City, China (Grant No. 2009B21007), the K. C. Wong Magna Fund in Ningbo University, the Open Fund of the State Key Laboratory of Luminescent Materials and Devices (South China University of Technology), China (Grant No. 2014-skllmd-01), and the Natural Science Foundation of Ningbo City, China (Grant No. 2014A610125).

Corresponding Authors:  Dai Shi-Xun, Wu Yue-Hao     E-mail:;

Cite this article: 

Li Chao-Ran, Dai Shi-Xun, Zhang Qin-Yuan, Shen Xiang, Wang Xun-Si, Zhang Pei-Qing, Lu Lai-Wei, Wu Yue-Hao, Lv She-Qin Low threshold fiber taper coupled rare earth ion-doped chalcogenide microsphere laser 2015 Chin. Phys. B 24 044208

[1] Zhang P J, Huang Y, Guo C L and Huang Y T 2013 Acta Phys. Sin. 62 224207 (in Chinese)
[2] Yang Y, Han Z F, Dong C H, Xiao Y F and Guo G C 2006 Chin. Phys. Lett. 23 2442
[3] Jia R, Jiang D S, Tan P H, Sun B Q, Zhang J B and Lin Y 2001 Chin. Phys. Lett. 18 1350
[4] Wang Y Z, Lu B L, Li Y Q and Liu Y S 1995 Opt. Lett. 20 770
[5] Pal A, Chen S Y, Sen R, Sun T and Grattan K 2013 Laser Phys. Lett. 10 085101
[6] He L, Özdemir Ş K and Yang L 2013 Laser Photon. Rev. 7 60
[7] Cai M, Painter O, Vahala K J and Sercel P C 2000 Opt. Lett. 25 1430
[8] Sandoghdar V, Treussart F, Hare J, Lef'evre-Seguin V, Raimond J M and Haroche S 1996 Phys. Rev. A 54 R1777
[9] Lissillour F, Messager D, Stéphan G and Féron P 2001 Opt. Lett. 26 1051
[10] Wu J, Jiang S and Peyghambarian N 2005 Opt. Express 13 10129
[11] Murugan G S, Zervas M N, Panitchob Y and Wilkinson J S 2011 Opt. Lett. 36 73
[12] Elliott G R, Murugan G S, Wilkinson J S, Zervas M N and Hewak D W 2010 Opt. Express 18 26720
[13] Vanier F, Rochette M, Godbout N and Peter Y A 2013 Opt. Lett. 38 4966
[14] Martín L L, Navarro-Urrios D, Ferrarese-Lupi F, Pérez-Rodríguez C, Martín I R, Montserrat J, Dominguez C, Garrido B and Capuj N 2013 Laser Phys. 23 075801
[15] Seddon A B 1995 J. Non-Cryst. Solids 184 44
[16] Shixun D, Bo P, Pengjun Z, Tiefeng X, Wang X, Qiuhua N and Xianghua Z 2010 J. Non-Cryst. Solids 356 2424
[17] Tong J, Liu A, Lv H, Wu Y, Yi X and Li Q 2009 Symposium on Photonics and Optoelectronics, 14-16 August, 2009, Wuhan, China
[18] Wei L L, Wu Y H, Li C R, Lv S Q, Zhang P Q, Dai S X, Xu Y S and Sheng X 2014 Acta Photon. Sin. 42 0730002
[19] Grillet C, Bian S N, Magi E C and Eggleton B J 2008 Appl. Phys. Lett. 92 171109-1
[20] Marchese D, De Sario M, Jha A, Kar A K and Smith E C 1998 J. Opt. Soc. Am. B 15 2361
[21] Knight J C, Cheung G, Jacques F and Birks T A 1997 Opt. Lett. 22 1129
[1] Design and fabrication of GeAsSeS chalcogenide waveguides with thermal annealing
Limeng Zhang(张李萌), Jinbo Chen(陈锦波), Jierong Gu(顾杰荣), Yixiao Gao(高一骁), Xiang Shen(沈祥), Yimin Chen(陈益敏), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2021, 30(3): 034210.
[2] Beam steering characteristics in high-power quantum-cascade lasers emitting at ∼ 4.6 μ m
Yong-Qiang Sun(孙永强), Jin-Chuan Zhang(张锦川), Feng-Min Cheng(程凤敏), Chao Ning(宁超), Ning Zhuo(卓宁), Shen-Qiang Zhai(翟慎强), Feng-Qi Liu(刘峰奇), Jun-Qi Liu(刘俊岐), Shu-Man Liu(刘舒曼), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2021, 30(3): 034211.
[3] Efficient loading of ultracold sodium atoms in an optical dipole trap from a high power fiber laser
Jing Xu(徐静), Wen-Liang Liu(刘文良), Ning-Xuan Zheng(郑宁宣), Yu-Qing Li(李玉清), Ji-Zhou Wu(武寄洲), Peng Li (李鹏), Yong-Ming Fu(付永明), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2021, 30(3): 033701.
[4] Nonlinear photoncurrent in transition metal dichalcogenide with warping term under illuminating of light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Yun-Hai Zhang(张运海). Chin. Phys. B, 2021, 30(3): 037301.
[5] Ground state cooling of an optomechanical resonator with double quantum interference processes
Shuo Zhang(张硕), Tan Li(李坦), Qian-Hen Duan(段乾恒), Jian-Qi Zhang(张建奇), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2021, 30(2): 023701.
[6] Dynamic measurement of beam divergence angle of different fields of view of scanning lidar
Qing-Yan Li(李青岩), Shi-Yu Yan(闫诗雨), Bin Zhang(张斌), and Chun-Hui Wang(王春晖). Chin. Phys. B, 2021, 30(2): 024205.
[7] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
[8] A fast and precise three-dimensional measurement system based on multiple parallel line lasers
Yao Wang(王尧) and Bin Lin(林斌). Chin. Phys. B, 2021, 30(2): 024201.
[9] Broadband absorption enhancement with ultrathin MoS2 film in the visible regime
Jun Wu(吴俊). Chin. Phys. B, 2021, 30(2): 024208.
[10] Numerical research on effect of overlap ratio on thermal-stress behaviors of the high-speed laser cladding coating
Xiaoxi Qiao(乔小溪), Tongling Xia(夏同领), and Ping Chen(陈平). Chin. Phys. B, 2021, 30(1): 018104.
[11] Continuous-wave operation of InAs/InP quantum dot tunable external-cavity laser grown by metal-organic chemical vapor deposition
Yan Wang(王岩), Shuai Luo(罗帅), Haiming Ji(季海铭), Di Qu(曲迪), and Yidong Huang(黄翊东). Chin. Phys. B, 2021, 30(1): 018106.
[12] Glass formation and physical properties of Sb 2S 3-CuI chalcogenide system
Qilin Ye(叶旗林), Dan Chen(陈旦), and Changgui Lin(林常规). Chin. Phys. B, 2021, 30(1): 016302.
[13] Ultrafast photoionization of ions and molecules by orthogonally polarized intense laser pulses: Effects of the time delay
Si-Qi Zhang(张思琪), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙), Wei Feng(冯伟), Sheng-Peng Zhou(周胜鹏), Kai-Jun Yuan(元凯军), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2021, 30(1): 013201.
[14] Quantum plasmons in the hybrid nanostructures of double vacancy defected graphene and metallic nanoarrays
Rui Tang(唐睿), Yang Xu(徐阳), Hong Zhang(张红), and Xin-Lu Cheng(程新路). Chin. Phys. B, 2021, 30(1): 017804.
[15] Effects of WC-Co reinforced Ni-based alloy by laser melting deposition: Wear resistance and corrosion resistance
Zhao-Zhen Huang(黄昭祯), Zhi-Chen Zhang(张志臣), Fan-Liang Tantai(澹台凡亮), Hong-Fang Tian(田洪芳), Zhen-Jie Gu(顾振杰), Tao Xi(郗涛), Zhu Qian(钱铸), and Yan Fang(方艳). Chin. Phys. B, 2021, 30(1): 016802.
No Suggested Reading articles found!