Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 070508    DOI: 10.1088/1674-1056/23/7/070508
GENERAL Prev   Next  

Partial and complete periodic synchronization in coupled discontinuous map lattices

Yang Ke-Lia b, Chen Hui-Yuna, Du Wei-Weia, Jin Taoa, Qu Shi-Xiana
a Institute of Theoretical and Computational Physics, School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China;
b Nonlinear Research Institute, Baoji University of Arts and Sciences, Baoji 721016, China
Abstract  The partial and complete periodic synchronization in coupled discontinuous map lattices consisting of both discontinuous and non-invertible maps are discussed. We classify three typical types of periodic synchronization states, which give rise to different spatiotemporal patterns including static partial periodic synchronization, dynamically periodic synchronization, and complete periodic synchronization patterns. A special prelude dynamics of partial and complete periodic synchronization motion, which is shown by five separated concave curves in the time series plots of the order parameters, is observed. The detailed analysis shows that the special prelude dynamics is induced by the competition between two synchronized clusters, and the analytical expression for the corresponding order parameter is obtained.
Keywords:  discontinuous map      coupled map lattices      periodic synchronization      prelude dynamics  
Received:  15 December 2013      Revised:  25 February 2014      Published:  15 July 2014
PACS:  05.45.Ra (Coupled map lattices)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10875076) and the Natural Science Foundation of Shaanxi Province, China (Grant No. SJ08A23).
Corresponding Authors:  Qu Shi-Xian     E-mail:  sxqu@snnu.edu.cn
About author:  05.45.Ra; 05.45.-a

Cite this article: 

Yang Ke-Li, Chen Hui-Yun, Du Wei-Wei, Jin Tao, Qu Shi-Xian Partial and complete periodic synchronization in coupled discontinuous map lattices 2014 Chin. Phys. B 23 070508

[1] Sumpter D J T 2009 Collective Animal Behavior (Princeton: Princeton University Press)
[2] Buck J and Buck E 1976 Sci. Am. 234 74
[3] Buono P L and Golubitsky M 2001 J. Math. Biol. 42 291
[4] Guevara M R, Shrier A and Glass L 1988 Am. J. Physiol. 254 H1
[5] He D and Stone L 2003 Proc. R. Soc. London Ser. B 270 1519
[6] Womelsdorf T and Fries P 2007 Curr. Opin. Neurobiol. 17 154
[7] Cuomo K M, Oppenheim A V and Strogatz S H 1993 IEEE Trans. Circ. Syst. Ⅱ 40 626
[8] Kuramoto Y 1984 Chemical Oscillations, Waves and Turbulence (Courier Dover Publications)
[9] Duane G S, Webster P J and Weiss J B 1999 J. Atmos. Sci. 56 4183
[10] Yanchuk S, Stefanski A, Kapitaniak T and Wojewoda J 2006 Phys. Rev. E 73 016209
[11] Pecora L M and Carroll T L 1998 Phys. Rev. Lett. 80 2109
[12] Huang L, Chen Q, Lai Y C and Pecora L M 2009 Phys. Rev. E 80 036204
[13] Huang L, Lai Y C, Park K, Wang X G, Lai C H and Gatenby R 2007 Frontiers of Physics in China 2 446
[14] Yang J, Hu G and Xiao J 1998 Phys. Rev. Lett. 80 496
[15] Fu C B, Zhang H, Zhan M and Wang X G 2012 Phys. Rev. E 85 066208
[16] Fu C B, Deng Z G, Huang L and Wang X G 2013 Phys. Rev. E 87 032909
[17] Liu Z H, Zhou J and Munakata T 2009 Euro. Phys. Lett. 87 50002
[18] Liu Z H and Zhou J 2008 Phys. Rev. E 77 056213
[19] Glass L and Belair J 1986 Lect. Notes. Biomath. 66 232
[20] Fang J Q, Luo X S, Wang B H and Zhao Y B 2005 Acta Phys. Sin. 54 5022 (in Chinese)
[21] He D R, Wang B H, Bauer M, Habip S, Krueger U, Martienssen W and Christiansen B 1994 Physica D 79 335
[22] Dai J, Chu X S and He D R 2006 Acta Phys. Sin. 55 3979 (in Chinese)
[23] He D R, Bauer M, Habip S, Krueger U, Martienssen W, Christiansen B and Wang B H 1992 Phys. Lett. A 171 61
[24] Qu S X, Lu Y Z, Zhang L and He D R 2008 Chin. Phys. B 17 4418
[25] Qu S X, Christiansen B and He D R 1995 Phys. Lett. A 201 61
[26] Qu S X, Wu S G and He D R 1998 Phys. Rev. E 57 402
[27] He D R, Ding E J, Bauer M, Habip S, Krueger U, Martienssen W and Christiansen B 1994 Euro. Phys. Lett. 26 165
[28] Wang C J, Yang K L and Qu S X 2013 Chin. Phys. B 22 030502
[29] Pereira R F, Viana R L, Lopes S R, Verg'es M C and de Pinto S S E 2011 Phys. Rev. E 83 037201
[30] Akaishi A and Shudo A 2009 Phys. Rev. E 80 066211
[31] Miyaguchi T and Aizawa Y 2007 Phys. Rev. E 75 066201
[32] dos Santos A M, Viana R L, Lopes S R, de Pinto S E S and Batista A M 2006 Physica A 367 145
[33] Zou H L, Guan S G and Lai C H 2009 Phys. Rev. E 80 046214
[34] Tan H F, Jin T and Qu S X 2012 Acta Phys. Sin. 61 040507 (in Chinese)
[35] Kaneko K 1989 Physica D 34 1
[36] Qu Z L, Hu G, Ma B and Tian G 1994 Phys. Rev. E 50 163
[37] Willeboordse F H 1993 Phys. Lett. A 183 187
[38] Ibarz B, Casado J M and Sanjuan M A F 2011 Phys. Rep. 501 1
[39] Girardi-Schappo M, Tragtenberg M H R and Kinouchi O 2013 J. Neurosci. Meth. 220 116
[40] Kuramoto Y and Nishikawa I 1987 J. Stat. Phys. 49 1
[41] Hu B and Liu Z H 2000 Phys. Rev. E 62 2114
[1] Phase order in one-dimensional piecewise linear discontinuous map
Ru-Hai Du(杜如海), Sheng-Jun Wang(王圣军), Tao Jin(金涛), Shi-Xian Qu(屈世显). Chin. Phys. B, 2018, 27(10): 100502.
[2] Grazing bifurcation analysis of a relative rotation system with backlash non-smooth characteristic
Liu Shuang, Wang Zhao-Long, Zhao Shuang-Shuang, Li Hai-Bin, Li Jian-Xiong. Chin. Phys. B, 2015, 24(7): 074501.
[3] Periodic synchronization of community networks with non-identical nodes uncertain parameters and adaptive coupling strength
Chai Yuan, Chen Li-Qun . Chin. Phys. B, 2014, 23(3): 030504.
[4] A method of recovering the initial vectors of globally coupled map lattices based on symbolic dynamics
Sun Li-Sha, Kang Xiao-Yun, Zhang Qiong, Lin Lan-Xin. Chin. Phys. B, 2011, 20(12): 120507.
[5] Interpreting a period-adding bifurcation scenario in neural bursting patterns using border-collision bifurcation in a discontinuous map of a slow control variable
Mo Juan, Li Yu-Ye, Wei Chun-Ling, Yang Ming-Hao, Gu Hua-Guang, Qu Shi-Xian, Ren Wei. Chin. Phys. B, 2010, 19(8): 080513.
[6] Analysis of convergence for initial condition estimation of coupled map lattices based on symbolic dynamics
Sun Li-Sha, Kang Xiao-Yun, Lin Lan-Xin. Chin. Phys. B, 2010, 19(11): 110507.
[7] A method of estimating initial conditions of coupled maplattices based on time-varying symbolic dynamics
Shen Min-Fen, Liu Ying, Lin Lan-Xin. Chin. Phys. B, 2009, 18(5): 1761-1768.
[8] Cascades with coupled map lattices in preferential attachment community networks
Cui Di, Gao Zi-You, Zhao Xiao-Mei. Chin. Phys. B, 2008, 17(5): 1703-1708.
[9] Evaluating the dynamical coupling between spatiotemporally chaotic signals via an information theory approach
Xiao Fang-Hong, Guo Shao-Hua, Hu Yuan-Tai. Chin. Phys. B, 2006, 15(7): 1460-1463.
No Suggested Reading articles found!