Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 048104    DOI: 10.1088/1674-1056/23/4/048104
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Synthesis and application of TiO2 single-crystal nanorod arrays grown by multicycle hydrothermal for dye-sensitized solar cells

Zhu Jian-Jing, Zhao Yu-Long, Zhu Lei, Gu Xiu-Quan, Qiang Ying-Huai
School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou 221116, China
Abstract  TiO2 is a wide band gap semiconductor with important applications in photovoltaic cells. Vertically aligned TiO2 nanorod arrays (NRs) are grown on the fluorine-doped tin oxide (FTO) substrates by a multicycle hydrothermal synthesis process. The samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and selected-area electron diffraction (SAED). It is found that dye-sensitized solar cells (DSSCs) assembled by the as-prepared TiO2 single-crystal NRs exhibit different trends under the condition of different nucleation and growth concentrations. Optimum cell performance is obtained with high nucleation concentration and low growth cycle concentration. The efficiency enhancement is mainly attributed to the improved specific surface area of the nanorod.
Keywords:  TiO2 single-crystal nanorod array      mild multicycle hydrothermal      dye-sensitized solar cell      low growth cycle concentration  
Received:  13 August 2013      Revised:  09 October 2013      Accepted manuscript online: 
PACS:  81.10.Aj (Theory and models of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  68.55.-a (Thin film structure and morphology)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  81.07.Gf (Nanowires)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2013XK07).
Corresponding Authors:  Zhao Yu-Long     E-mail:  sdyulong@cumt.edu.cn
About author:  81.10.Aj; 68.55.-a; 42.25.Bs; 81.07.Gf

Cite this article: 

Zhu Jian-Jing, Zhao Yu-Long, Zhu Lei, Gu Xiu-Quan, Qiang Ying-Huai Synthesis and application of TiO2 single-crystal nanorod arrays grown by multicycle hydrothermal for dye-sensitized solar cells 2014 Chin. Phys. B 23 048104

[1] O'Regan B and Grätzel M 1991 Nature 353 737
[2] Law M, Greene L E, Johnson J C, Saykally R and Yang P 2005 Nat. Mater. 4 455
[3] Yella A, Lee H W, Tsao H N, Yi C Y, Chandiran A K, Nazeeruddin M K, Diau E W G, Yeh C Y, Zakeeruddin S M and Grätzel M 2011 Science 334 629
[4] Fisher A C, Peter L M, Ponomarev E A, Walker A B and Wijayantha K G U 2000 J. Phys. Chem. B 104 949
[5] Bisquert J, Cahen D, Hodes G, Ruhle S and Zaban A 2004 J. Phys. Chem. B 108 8106
[6] Qin Z H 2013 Chin. Phys. B 22 098108
[7] Liao J Y, Lei B X, Chen H Y, Kuang D B and Su C Y 2012 Energy Environ. Sci. 5 5750
[8] Shao F, Sun J, Gao L, Yang S W and Luo J Q 2012 J. Mater. Chem. 22 6824
[9] Xu M, Da P M, Wu H Y, Zhao D Y and Zheng G F 2012 Nano Lett. 12 1503
[10] Feng X J, Shankar K, Paulose M and Grimes C A 2009 Angew. Chem. Int. Ed. 48 8095
[11] Barea E, Xu X Q, Gonzalez-Pedro V, Ripolles-Sanchis T, Fabregat-Santiago F and Bisquert J 2011 Energy Environ. Sci. 4 3414
[12] Yang M J, Ding B, Lee S and Lee J K 2011 J. Phys. Chem. C 115 14534
[13] Huang Q L, Zhou G, Fang L, Hu L P and Wang Z S 2011 Energy Environ. Sci. 4 2145
[14] Xiong B T, Zhou B X, Bai J, Zheng Q, Liu Y B, Cai W M and Cai J 2008 Chin. Phys. B 17 3713
[15] Li Y, Jia X P, Hu M H, Liu X B, Yan B M, Zhou Z X, Zhang Z F and Ma H A 2012 Chin. Phys. B 21 058101
[16] Sun P P, Zhang X T, Liu X P, Wang L L, Wang C H, Yang J K and Liu Y C 2012 J. Mater. Chem. 22 6389
[17] Park J T, Patel R, Jeon H, Kim D J, Shin J S and Kim J H 2012 J. Mater. Chem. 22 6131
[18] Ai G, Sun W T, Zhang Y L and Peng L M 2011 Chem. Commun. 47 6608
[19] Dai G T, Zhao L, Li J, Wan L, Hu F, Xu Z X, Dong B H, Lu H B, Wang S M and Yu J G 2012 J. Colloid Interface Sci. 365 46
[20] Zhao Y L, Gu X Q and Qiang Y H 2012 Thin Solid Films 520 2814
[21] Kumar A, Madaria A R and Zhou C W 2010 J. Phys. Chem. C 114 7787
[22] Kumar A, Li K T, Madaria A R and Zhou C W 2011 Nano Res. 4 1181
[23] Liu B and Aydil E S 2009 J. Am. Chem. Soc. 131 3985
[24] Zhou Z J, Fan J Q, Wang X, Zhou W H, Du Z L and Wu S X 2011 ACS Appl. Mater. Interfaces 3 4349
[1] Methodical review of the literature referred to the dye-sensitized solar cells: Bibliometrics analysis and road mapping
Karwan Wasman Qadir, Qayyum Zafar, Nader Ale Ebrahim, Zubair Ahmad, Khaulah Sulaiman, Rizwan Akram, Mohammad Khaja Nazeeruddin. Chin. Phys. B, 2019, 28(11): 118401.
[2] Effect of hydroxyl on dye-sensitized solar cells assembled with TiO2 nanorods
Lijian Meng(孟立建), Tao Yang(杨涛), Sining Yun(云斯宁), Can Li(李灿). Chin. Phys. B, 2018, 27(1): 016802.
[3] Electron transport properties of TiO2 shell on Al2O3 core in dye-sensitized solar cells
Dongmei Xie(解东梅), Xiaowen Tang(唐小文), Yuan Lin(林原), Pin Ma(马品), Xiaowen Zhou(周晓文). Chin. Phys. B, 2018, 27(1): 017804.
[4] Dye-sensitized solar cell module realized photovoltaic and photothermal highly efficient conversion via three-dimensional printing technology
Qi-Zhang Huang(黄启章), Yan-Qing Zhu(朱艳青), Ji-Fu Shi(史继富), Lei-Lei Wang(王雷雷), Liu-Wen Zhong(钟柳文), Gang Xu(徐刚). Chin. Phys. B, 2017, 26(3): 038401.
[5] Dye-sensitized solar cells:Atomic scale investigation of interface structure and dynamics
Ma Wei, Zhang Fan, Meng Sheng. Chin. Phys. B, 2014, 23(8): 086801.
[6] Low platinum loading PtNPs/graphene composite catalyst with high electrocatalytic activity for dye-sensitized solar cells
Li Ping-Jian, Chen Kai, Chen Yuan-Fu, Wang Ze-Gao, Hao Xin, Liu Jing-Bo, He Jia-Rui, Zhang Wan-Li. Chin. Phys. B, 2012, 21(11): 118101.
[7] Light scattering of nanocrystalline TiO2 film used in dye-sensitized solar cells
Xiong Bi-Tao, Zhou Bao-Xue, Bai Jing, Zheng Qing, Liu Yan-Biao, Cai Wei-Min, Cai Jun. Chin. Phys. B, 2008, 17(10): 3713-3719.
No Suggested Reading articles found!