Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 046801    DOI: 10.1088/1674-1056/23/4/046801
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

An effective-field theory study of hexagonal Ising nanowire:Thermal and magnetic properties

Yusuf Kocakaplana, Ersin Kantarb
a Institute of Science, Erciyes University, 38039 Kayseri, Turkey;
b Department of Physics, Erciyes University, 38039 Kayseri, Turkey
Abstract  By means of the effective-field theory (EFT) with correlations, the thermodynamic and magnetic quantities (such as magnetization, susceptibility, internal energy, specific heat, free energy, hysteresis curves, and compensation behaviors) of the spin-1/2 hexagonal Ising nanowire (HIN) system with core/shell structure have been presented. The hysteresis curves are obtained for different values of the system parameters, in both ferromagnetic and antiferromagnetic cases. It has been shown that the system only undergoes a second-order phase transition. Moreover, from the thermal variations of the total magnetization, the five compensation types can be found under certain conditions, namely the Q-, R-, S-, P-, and N-types.
Keywords:  hexagonal Ising nanowire      effective-field theory      hysteresis curve      compensation behavior  
Received:  31 July 2013      Revised:  04 October 2013      Accepted manuscript online: 
PACS:  68.35.Rh (Phase transitions and critical phenomena)  
  05.50.+q (Lattice theory and statistics)  
  75.60.-d (Domain effects, magnetization curves, and hysteresis)  
  62.23.Hj (Nanowires)  
Corresponding Authors:  Ersin Kantar     E-mail:  ersinkantar@erciyes.edu.tr
About author:  68.35.Rh; 05.50.+q; 75.60.-d; 62.23.Hj

Cite this article: 

Yusuf Kocakaplan, Ersin Kantar An effective-field theory study of hexagonal Ising nanowire:Thermal and magnetic properties 2014 Chin. Phys. B 23 046801

[1] Skumryev V, Stoyanov, Zhang Y, Hadjipanayis G C, Givord D and Nogués J 2003 Nature 423 850
[2] Zhong Z, Wang D, Cui Y, Bockrath M W and Lieber C M 2003 Science 302 1377
[3] Liu Z, Zhang D, Han S, Li C, Lei B, Lu W, Fang J and Zhou C 2005 J. Am. Chem. Soc. 127 6
[4] Skomski R 2003 J. Phys.: Condens. Matter 15 841
[5] Denisov S I, Lyutyy T V, Hanggi P and Trohidou K N 2006 Phys. Rev. B 74 104406
[6] Zou X and Xiao G 2008 Phys. Rev. B 77 054417
[7] Berkowitz A E, Kodama R H, Makhlouf S A, Parker F T, Spada F E, McNiff E J and Foner S 1999 J. Magn. Magn. Mater. 196 591
[8] Alexiou C, Schmidt A, Klein R, Hullin P, Bergemann C and Arnold W 2002 J. Magn. Magn. Mater. 252 363
[9] Sounderya N and Zhang Y 2008 Rec. Pat. Biomed. Engin. 1 34
[10] Kurlyandskaya G V, Sanchez M L, Hernando B, Prida V M, Gorria P and Tejedor M 2003 Appl. Phys. Lett. 82 3053
[11] Nie S and Emory S R 1997 Science 275 1102
[12] Zeng H, Li J, Liu J P, Wang Z L and Sun S 2002 Nature 420 395
[13] Elliott D W and Zhang W X 2001 Environ. Sci. Tech. 35 4922
[14] Wegrowe J E, Kelly D, Jaccard Y, Guittienne Ph and Ansermet J Ph 1999 Europhys. Lett. 45 626
[15] Fert A and Piraux L 1999 J. Magn. Magn. Mater. 200 338
[16] Kodama R H 1999 J. Magn. Magn. Mater. 200 359
[17] Wang H, Zhou Y, Wang E and Lin D L 2001 Chin. J. Phys. 39 85
[18] Wang H, Zhou Y, Lin D L and Wang C 2002 Phys. Status Solidi B 232 254
[19] Garanin D A and Kachkachi H 2003 Phys. Rev. Lett. 90 65504
[20] Leite V S and Figueiredo W 2005 Physica A 350 379
[21] Kaneyoshi T 2009 Phys. Status Solidi B 246 2359
[22] Kaneyoshi T 2009 J. Magn. Magn. Mater. 321 3430
[23] Kaneyoshi T 2005 Phys. Status Solidi B 242 2938
[24] Kaneyoshi T 2010 J. Magn. Magn. Mater. 322 3014
[25] Kaneyoshi T 2011 J. Magn. Magn. Mater. 323 1145
[26] Kaneyoshi T 2012 Phase Transit. 85 264
[27] Kaneyoshi T 2011 Physica A 390 3697
[28] Kaneyoshi T 2011 Solid State Commun. 151 1528
[29] Kaneyoshi T 2011 Phys. Status Solidi B 248 250
[30] Canko O, Erdinc A, Taskın F and Atis M 2011 Phys. Lett. A 375 3547
[31] Wang C D, Lu Z Z, Yuan W X, Kwok S Y and Teng B H 2011 Phys. Lett. A 375 3405
[32] Keskin M, ŞarlıN and Deviren B 2011 Solid State Commun. 151 1025
[33] Kaneyoshi T 2012 Physica A 391 3616
[34] ŞarlıN 2013 Physica B 411 12
[35] Canko O, Erdinc A, Taskın F and Yıldırım A F 2012 J. Magn. Magn. Mater. 324 508
[36] Jiang W, Guan H, Wang Z and Guo A 2012 Physica B 407 378
[37] Kaneyoshi T 2012 Solid State Commun. 152 883
[38] Bouhou S, Essaoudi I, Ainane A, Saber M, Dujardin F and de Miguel J J 2012 J. Magn. Magn. Mater. 324 2434
[39] Liu L M, Jiang W, Wang Z, Guan H Y and Guo A B 2012 J. Magn. Magn. Mater. 324 4034
[40] Jiang W, Guan H Y, Wang Z and Guo A B 2012 Physica B 407 378
[41] Jiang W, Zhang F, Li X X, Guan H Y, Guo A B and Wang Z 2013 Physica E 47 95
[42] Jiang W, Li X X and Liu L M 2013 Physica E 53 29
[43] Eftaxias E and Trohidou K N 2005 Phys. Rev. B 71 134406
[44] Iglesias O, Batlle X and Labarta A 2005 Phys. Rev. B 72 212401
[45] Kechrakos D, Trohidou K N and Vasilakaki M 2007 J. Magn. Magn. Mater. 316 e291
[46] Hu Y and Du A 2007 J. Appl. Phys. 102 113911
[47] Trohidou K N, Vasilakaki M, Bianco L Del, Fiorani D and Testa A M 2007 J. Magn. Magn. Mater. 316 e82
[48] Wu M H, Li Q C and Liu J M 2007 J. Phys.: Condens. Matter 19 186202
[49] Iglesias O, Batlle X and Labarta A 2007 J. Phys.: Condens. Matter 19 406232
[50] Iglesias O, Batlle X and Labarta A 2008 J. Nanosci. Nanotechnol. 8 2761
[51] Vasilakaki M, Eftaxias E and Trohidou K N 2008 Phys. Status Solidi A 205 1865
[52] Vasilakaki M and Trohidou K N 2009 Phys. Rev. B 79 144402
[53] Hu Y and Du A 2009 Phys. Status Solidi B 246 2384
[54] Hu Y, Liu L and Du A 2010 Phys. Status Solidi B 247 972
[55] Zaim A, Kerouad M and Amraoui Y El 2009 J. Magn. Magn. Mater. 321 1083
[56] Zaim A and Kerouad M 2010 Physica A 389 3435
[57] Jiang L, Zhang J, Chen Z, Feng Q and Huang Z 2010 Physica B 405 420
[58] Yüksel Y, Aydıner E and Polat H 2011 J. Magn. Magn. Mater. 323 3168
[59] Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H and Teller E 1953 J. Chem. Phys. 21 1087
[60] Neél L 1948 Annals of Physics (Amsterdam: Netherlands) 3 137
[61] Chikazumi S 1997 Physics of Ferromagnetism (Oxford: Oxford University Press)
[62] Zhou H, Yiu Y, Aronson M C and Wong S S 2008 J. Solid State Chem. 181 1539
[63] Duan J, Liu J, Cornelius T W, Yao H, Mo D, Chen Y, Zhang L, Sun Y, Hou M, Trautmann C and Neumann R 2009 Nucl. Instrum. Methods Phys. Res. B 267 2567
[64] Fleaca C T, Morjan I, Alexandrescu R, Dumitrache F, Soare I, Gavrila-Florescu L, Normand F Le and Derory A 2009 Appl. Surf. Sci. 255 5386
[65] Lupu N, Lostun L and Chiriac H 2010 J. Appl. Phys. 107 09E315
[66] Wu H W, Tsai C J and Chen L J 2007 Appl. Phys. Lett. 90 043121
[67] Curiale J, Sanchez R D, Troiani H E, Leyva A G and Levy P 2005 Appl. Phys. Lett. 87 043113
[68] Zaim A, Kerouad M and Amraoui Y El 2009 J. Magn. Magn. Mater. 321 1077
[69] Chong Y T, Gorlitz D, Martens S, Yau M Y E, Allende S, Bachmann J and Nielsch K 2010 Adv. Mater. 22 2435
[1] Random crystal field effect on hysteresis loops and compensation behavior of mixed spin-(1,3/2) Ising system
K Htoutou, Y Benhouria, A Oubelkacem, R Ahl laamara, L B Drissi. Chin. Phys. B, 2017, 26(12): 127501.
[2] Magnetic hysteresis, compensation behaviors, and phase diagrams of bilayer honeycomb lattices
Ersin Kantar. Chin. Phys. B, 2015, 24(10): 107501.
[3] Effect of alumina thickness on Al2O3/InP interface with post deposition annealing in oxygen ambient
Yang Zhuo, Yang Jing-Zhi, Huang Yong, Zhang Kai, Hao Yue. Chin. Phys. B, 2014, 23(7): 077305.
[4] Effective-field and Monte Carlo studies of mixed spin-2 and spin-1/2 Ising diamond chain
Liu Wei-Jie, Xin Zi-Hua, Chen Si-Lun, Zhang Cong-Yan. Chin. Phys. B, 2013, 22(2): 027501.
[5] Effects of the trimodal random field on the magnetic properties of a spin-1 Ising nanotube
H. Magoussi, A. Zaim, M. Kerouad. Chin. Phys. B, 2013, 22(11): 116401.
[6] Phase diagrams of spin-3/2 Ising model in the presence of random crystal field within the effective field theory based on two approximations
Ali Yigit, Erhan Albayrak. Chin. Phys. B, 2013, 22(10): 100508.
[7] Phase diagrams of the spin-2 Ising model in the presence of a quenched diluted crystal field distribution
Ali Yigit, Erhan Albayrak. Chin. Phys. B, 2012, 21(11): 110503.
[8] Phase diagrams in mixed spin-3/2 and spin-2 Ising system with two alternative layers within the effective-field theory
Bayram Deviren, Yasin Polat, Mustafa Keskin. Chin. Phys. B, 2011, 20(6): 060507.
[9] Kinetic Ising model in a time-dependent oscillating external magnetic field: effective-field theory
Bayram Deviren, Osman Canko, Mustafa Keskin. Chin. Phys. B, 2010, 19(5): 050518.
No Suggested Reading articles found!