Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 040504    DOI: 10.1088/1674-1056/23/4/040504
GENERAL Prev   Next  

Structure identification of an uncertain network coupled with complex-variable chaotic systems via adaptive impulsive control

Liu Dan-Feng, Wu Zhao-Yan, Ye Qing-Ling
College of Mathematics and Information Science, Jiangxi Normal University, Nanchang 330022, China
Abstract  In this paper, structure identification of an uncertain network coupled with complex-variable chaotic systems is investigated. Both the topological structure and the system parameters can be unknown and need to be identified. Based on impulsive stability theory and the Lyapunov function method, an impulsive control scheme combined with an adaptive strategy is adopted to design effective and universal network estimators. The restriction on the impulsive interval is relaxed by adopting an adaptive strategy. Further, the proposed method can monitor the online switching topology effectively. Several numerical simulations are provided to illustrate the effectiveness of the theoretical results.
Keywords:  structure identification      network      complex-variable chaotic system      impulsive control  
Received:  31 May 2013      Revised:  11 September 2013      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the Tianyuan Special Funds of the National Natural Science Foundation of China (Grant No. 11226242) and the Natural Science Foundation of Jiangxi Province of China (Grant No. 20122BAB211006).
Corresponding Authors:  Wu Zhao-Yan     E-mail:  zhywu7981@gmail.com
About author:  05.45.Xt; 05.45.-a

Cite this article: 

Liu Dan-Feng, Wu Zhao-Yan, Ye Qing-Ling Structure identification of an uncertain network coupled with complex-variable chaotic systems via adaptive impulsive control 2014 Chin. Phys. B 23 040504

[1] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47
[2] Wang X F and Chen G R 2002 IEEE Trans. Circuits Syst. I 49 54
[3] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D U Phys. Rep. 424 175
[4] Arenas A, Díaz-Guilera A, Kurths J, Moreno Y and Zhou C S 2008 Phys. Rep. 469 93
[5] Chen G R, Wang X F and Li X 2012 Introduction to Complex Networks: Models, Structures and Dynamics (Beijing: High Education Press)
[6] Duan Z S, Chen G R and Huang L 2008 Phys. Lett. A 372 3741
[7] Wang X F and Chen G 2002 Physica A 310 521
[8] Yu W W, Chen G R and Lü J H 2009 Automatica 45 429
[9] Song Q and Cao J D 2010 IEEE Trans. Circuits Syst. I 57 672
[10] Li K Z, He E, Zeng Z R and Tse C K 2013 Chin. Phys. B 22 070504
[11] Wu Z Y and Fu X C 2012 Commun. Nonlinear Sci. Numer. Simul. 17 1628
[12] Deng L P and Wu Z Y 2012 Commun. Theor. Phys. 58 525
[13] Zheng S, Wang S G, Dong G G and Bi Q S 2012 Commun. Nonlinear Sci. Numer. Simul. 17 284
[14] Wang S G and Yao H X 2012 Chin. Phys. B 21 050508
[15] Yu D C, Righero M and Kocarev L 2006 Phys. Rev. Lett. 97 188701
[16] Wu X Q 2008 Physica A 387 997
[17] Wang S G and Zheng S 2013 Chin. Phys. B 22 070503
[18] Liu H, Lu J A, Lü J H and Hill D J 2009 Automatica 45 1799
[19] Zhao J C, Li Q, Lu J A and Jiang Z P 2010 Chaos 20 023119
[20] Guo S J and Fu X C 2010 Commun. Theor. Phys. 54 181
[21] Xu Y H, Zhou W N, Fang J A and Sun W 2011 Commun. Nonlin. Sci. Numer. Simul. 16 3337
[22] Rao P C, Wu Z Y and Liu M 2012 Nonlinear Dyn. 67 1729
[23] Wu Z Y and Fu X C 2013 IET Control Theory Appl. 7 1269
[24] Chen Y S, Hwang R R and Chang C C 2010 Phys. Lett. A 374 2254
[25] Wan X J and Sun J T 2011 Math. Comput. Simul. 81 1609
[26] Li C X, Shi J P and Sun J T 2011 Nonlinear Anal.: TMA 74 3099
[27] Wang S G and Yao H X 2011 Chin. Phys. B 20 090513
[28] Lu J Q, Ho D W C, Cao J D and Kurths J 2011 IEEE Trans. Neural Netw. 22 329
[29] Liu J G 2013 Chin. Phys. B 22 0605110
[30] Li C L, Tong Y N, Li H M and Su K L 2012 Phys. Scr. 86 055003
[31] Chen Y S and Chang C C 2012 Nonlinear Dyn. 70 1795
[32] Fowler A C, Gibbon J D and McGuinness M J 1982 Physica D 4 139
[33] Mahmoud G M, Bountis T and Mahmoud E E 2007 Int. J. Bifur. Chaos 17 4295
[34] Mahmoud G M, Aly S A and Farghaly A A 2007 Chaos, Solitons and Fractals 33 178
[35] Wu Z Y, Chen G R and Fu X C 2010 Chaos 22 023127
[36] Wu Z Y and Fu X C 2013 Int. J. Mod. Phys. C 24 1350007
[37] Horn R A and Johnson C R 1990 Matrix Analysis (New York: Cambridge University Press)
[38] Newman M E J and Watts D J 1999 Phys. Lett. A 263 341
[1] $\mathcal{H}_{\infty }$ state estimation for Markov jump neural networks with transition probabilities subject to the persistent dwell-time switching rule
Hao Shen(沈浩), Jia-Cheng Wu(吴佳成), Jian-Wei Xia(夏建伟), and Zhen Wang(王震). Chin. Phys. B, 2021, 30(6): 060203.
[2] Dynamics of high-frequency modulated waves in a nonlinear dissipative continuous bi-inductance network
S M Ngounou and F B Pelap. Chin. Phys. B, 2021, 30(6): 060504.
[3] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[4] Soliton, breather, and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints
Jun-Cai Pu(蒲俊才), Jun Li(李军), and Yong Chen(陈勇). Chin. Phys. B, 2021, 30(6): 060202.
[5] Dynamical robustness of networks based on betweenness against multi-node attack
Zi-Wei Yuan(袁紫薇), Chang-Chun Lv(吕长春), Shu-Bin Si(司书宾), and Dong-Li Duan(段东立). Chin. Phys. B, 2021, 30(5): 050501.
[6] Contagion dynamics on adaptive multiplex networks with awareness-dependent rewiring
Xiao-Long Peng(彭小龙) and Yi-Dan Zhang(张译丹). Chin. Phys. B, 2021, 30(5): 058901.
[7] Enhancements of the Gaussian network model in describing nucleotide residue fluctuations for RNA
Wen-Jing Wang(王文静) and Ji-Guo Su(苏计国). Chin. Phys. B, 2021, 30(5): 058701.
[8] Convolutional neural network for transient grating frequency-resolved optical gating trace retrieval and its algorithm optimization
Siyuan Xu(许思源), Xiaoxian Zhu(朱孝先), Ji Wang(王佶), Yuanfeng Li(李远锋), Yitan Gao(高亦谈), Kun Zhao(赵昆), Jiangfeng Zhu(朱江峰), Dacheng Zhang(张大成), Yunlin Chen(陈云琳), and Zhiyi Wei(魏志义). Chin. Phys. B, 2021, 30(4): 048402.
[9] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[10] Relationship between manifold smoothness and adversarial vulnerability in deep learning with local errors
Zijian Jiang(蒋子健), Jianwen Zhou(周健文), and Haiping Huang(黄海平). Chin. Phys. B, 2021, 30(4): 048702.
[11] Effective suppression of beta oscillation in Parkinsonian state via a noisy direct delayed feedback control scheme
Hai-Tao Yu(于海涛), Zi-Han Meng(孟紫寒), Chen Liu(刘晨), Jiang Wang(王江), and Jing Liu(刘静). Chin. Phys. B, 2021, 30(3): 038703.
[12] Discontinuous event-trigger scheme for global stabilization of state-dependent switching neural networks with communication delay
Yingjie Fan(樊英杰), Zhen Wang(王震), Jianwei Xia(夏建伟), and Hao Shen(沈浩). Chin. Phys. B, 2021, 30(3): 030202.
[13] Constructing refined null models for statistical analysis of signed networks
Ai-Wen Li(李艾纹), Jing Xiao(肖婧, and Xiao-Ke Xu(许小可). Chin. Phys. B, 2021, 30(3): 038901.
[14] Soliton interactions and asymptotic state analysis in a discrete nonlocal nonlinear self-dual network equation of reverse-space type
Cui-Lian Yuan(袁翠连) and Xiao-Yong Wen(闻小永). Chin. Phys. B, 2021, 30(3): 030201.
[15] Constructing reduced model for complex physical systems via interpolation and neural networks
Xuefang Lai(赖学方), Xiaolong Wang(王晓龙, and Yufeng Nie(聂玉峰). Chin. Phys. B, 2021, 30(3): 030204.
No Suggested Reading articles found!