Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 040502    DOI: 10.1088/1674-1056/23/4/040502
GENERAL Prev   Next  

Function projective lag synchronization of fractional-order chaotic systems

Wang Shaa, Yu Yong-Guanga, Wang Hua, Ahmed Rahmanib
a Department of Mathematics, Beijing Jiaotong University, Beijing 100044, China;
b LAGIS UMR 8219 CNRS, Ecole Centrale de Lille, 59651 Villeneuve d'Ascq, France
Abstract  Function projective lag synchronization of different structural fractional-order chaotic systems is investigated. It is shown that the slave system can be synchronized with the past states of the driver up to a scaling function matrix. According to the stability theorem of linear fractional-order systems, a nonlinear fractional-order controller is designed for the synchronization of systems with the same and different dimensions. Especially, for two different dimensional systems, the synchronization is achieved in both reduced and increased dimensions. Three kinds of numerical examples are presented to illustrate the effectiveness of the scheme.
Keywords:  fractional order      chaos      function projective lag synchronization  
Received:  29 March 2013      Revised:  23 May 2013      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Gg (Control of chaos, applications of chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11371049) and the Science Foundation of Beijing Jiaotong University (Grant Nos. 2011JBM130 and 2011YJS076).
Corresponding Authors:  Wang Sha     E-mail:
About author:  05.45.Xt; 05.45.Gg

Cite this article: 

Wang Sha, Yu Yong-Guang, Wang Hu, Ahmed Rahmani Function projective lag synchronization of fractional-order chaotic systems 2014 Chin. Phys. B 23 040502

[1] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[2] Pecora L M and Carroll T L 1991 Phys. Rev. A 44 2374
[3] Chen G and Dong X 1998 From Chaos to Order: Methodologies, Perspectives and Applications (Singapore: World Scientific)
[4] Yu H T, Wang J, Deng B, Wei X L and Chen Y Y 2013 Chin. Phys. B 22 058701
[5] Huang J J, Li C D, Zhang W and Wei P C 2012 Chin. Phys. B 21 090508
[6] Lu J F 2008 Commun. Nonlinear Sci. Numer. Simul. 13 1851
[7] Fu J, Yu M and Ma T D 2011 Chin. Phys. B 20 120508
[8] Mahmoud G M and Mahmoud E E 2012 Nonlinear Dyn. 67 1613
[9] Wang G, Shen Y and Yin Q 2013 Chin. Phys. B 22 050504
[10] Tang R A, Liu Y L and Xue J K 2009 Phys. Lett. A 373 1449
[11] Botmart T, Niamsup P and Liu X 2012 Commun. Nonlinear Sci. Numer. Simul. 17 1894
[12] Yu Y G and Li H X 2011 Nonlinear Anal. RWA 12 388
[13] Jawaada W, Noorani M S M and Al-sawalha M M 2012 Chin. Phys. Lett. 29 120505
[14] Podlubny I 1999 Fractional Differential Equations (New York: Academic Press)
[15] Samko S G, Kilbas A A and Marichev Q I 1993 Fractional Integrals and Derivatives: Theory and Applications (New York: Gordon and Breach)
[16] Hilfer R 2001 Applications of Fractional Calculus in Physics (New Jersey: World Scientific)
[17] Han Q, Liu C X, Sun L and Zhu D R 2013 Chin. Phys. B 22 020502
[18] Das S 2007 Functional Fractional Calculus for System Identification and Controls (New York: Springer Berlin Heidelberg)
[19] Tien D N 2013 J. Math. Anal. Appl. 345 702
[20] Kiani-B A, Fallahi K, Pariz N and Leung H 2009 Commun. Nonlinear Sci. Numer. Simul. 14 863
[21] Matignon D 1996 Stability Results of Fractional Differential Equations with Applications to Control Processing (France: IMACS, IEEE-SMC)
[22] Li R H and Chen W S 2013 Chin. Phys. B 22 040503
[23] Mohammad S T and Mohammad H 2008 Physica A 387 57
[24] Zhou P and Zhu W 2011 Nonlinear Anal. RWA 12 811
[25] Yuan L G and Yang Q G 2012 Commun. Nonlinear Sci. Numer. Simul. 17 305
[26] Si G Q, Sun Z Y, Zhang Y B and Chen W Q 2012 Nonlinear Anal. RWA 13 1761
[27] Aghababa M P 2012 Commun. Nonlinear Sci. Numer. Simul. 17 2670
[28] Wang X Y and Zhang H 2013 Chin. Phys. B 22 048902
[29] Ma S Q, Lu Q S and Feng Z S 2010 Int. J. Nonlinear Mech. 45 659
[30] Guo W L 2011 Nonlinear Anal. RWA 12 2579
[31] Li C D, Liao X F and Wong K W 2005 Chaos, Solitons and Fractals 23 183
[32] Li G H 2009 Chaos, Solitons and Fractals 41 2630
[33] Tae H L and Ju H P 2009 Chin. Phys. Lett. 26 090507
[34] Zhang R X and Yang S P 2011 Chin. Phys. B 20 090512
[35] Chen L P, Chai Y and Wu R C 2011 Phys. Lett. A 375 2099
[36] Terman D, Kopell N and Bose A 1998 Physica D 117 241
[37] Dai H, Jia L X and Zhang Y B 2012 Chin. Phys. B 21 120508
[38] Hu M F, Xu Z Y, Zhang R and Hu A H 2007 Phys. Lett. A 365 315
[39] Wang S, Yu Y G and Diao M 2010 Physica A 389 4981
[40] Diethelm K, Ford N J and Freed A D 2002 Nonlinear Dyn. 29 3
[41] Diethelm K, Ford N J and Freed A D 2004 Numer. Algorithms 36 31
[42] Li C G and Chen G R 2004 Physica A 341 55
[43] Mohammad S T and Mohammad H 2007 Phys. Lett. A 367 102
[44] Wang X Y and Song J M 2009 Commun. Nonlinear Sci. Numer. Simul. 14 3351
[45] Hegazi A S and Matouk A E 2011 Appl. Math. Lett. 24 1938
[1] Dynamics analysis in a tumor-immune system with chemotherapy
Hai-Ying Liu(刘海英), Hong-Li Yang(杨红丽), and Lian-Gui Yang(杨联贵). Chin. Phys. B, 2021, 30(5): 058201.
[2] Control of chaos in Frenkel-Kontorova model using reinforcement learning
You-Ming Lei(雷佑铭) and Yan-Yan Han(韩彦彦). Chin. Phys. B, 2021, 30(5): 050503.
[3] Resistance fluctuations in superconducting KxFe2-ySe2 single crystals studied by low-frequency noise spectroscopy
Hai Zi(子海), Yuan Yao(姚湲), Ming-Chong He(何明冲), Di Ke(可迪), Hong-Xing Zhan(詹红星), Yu-Qing Zhao(赵宇清), Hai-Hu Wen(闻海虎), and Cong Ren(任聪). Chin. Phys. B, 2021, 30(4): 047402.
[4] A multi-directional controllable multi-scroll conservative chaos generator: Modelling, analysis, and FPGA implementation
En-Zeng Dong(董恩增), Rong-Hao Li(李荣昊), and Sheng-Zhi Du(杜升之). Chin. Phys. B, 2021, 30(2): 020505.
[5] Analysis and implementation of new fractional-order multi-scroll hidden attractors
Li Cui(崔力), Wen-Hui Luo(雒文辉), and Qing-Li Ou(欧青立). Chin. Phys. B, 2021, 30(2): 020501.
[6] Random-injection-based two-channel chaos with enhanced bandwidth and suppressed time-delay signature by mutually coupled lasers: Proposal and numerical analysis
Shi-Rong Xu(许世蓉), Xin-Hong Jia (贾新鸿), Hui-Liang Ma(马辉亮), Jia-Bing Lin(林佳兵), Wen-Yan Liang(梁文燕), and Yu-Lian Yang(杨玉莲). Chin. Phys. B, 2021, 30(1): 014203.
[7] Quantum to classical transition induced by a classically small influence
Wen-Lei Zhao(赵文垒), Quanlin Jie(揭泉林). Chin. Phys. B, 2020, 29(8): 080302.
[8] Hidden attractors in a new fractional-order discrete system: Chaos, complexity, entropy, and control
Adel Ouannas, Amina Aicha Khennaoui, Shaher Momani, Viet-Thanh Pham, Reyad El-Khazali. Chin. Phys. B, 2020, 29(5): 050504.
[9] Bifurcation and chaos characteristics of hysteresis vibration system of giant magnetostrictive actuator
Hong-Bo Yan(闫洪波), Hong Gao(高鸿), Gao-Wei Yang(杨高炜), Hong-Bo Hao(郝宏波), Yu Niu(牛禹), Pei Liu(刘霈). Chin. Phys. B, 2020, 29(2): 020504.
[10] Chaotic dynamics of complex trajectory and its quantum signature
Wen-Lei Zhao(赵文垒), Pengkai Gong(巩膨恺), Jiaozi Wang(王骄子), and Qian Wang(王骞). Chin. Phys. B, 2020, 29(12): 120302.
[11] Nonlinear dynamics in non-volatile locally-active memristor for periodic and chaotic oscillations
Wen-Yu Gu(谷文玉), Guang-Yi Wang(王光义), Yu-Jiao Dong(董玉姣), and Jia-Jie Ying(应佳捷). Chin. Phys. B, 2020, 29(11): 110503.
[12] Chaotic analysis of Atangana-Baleanu derivative fractional order Willis aneurysm system
Fei Gao(高飞), Wen-Qin Li(李文琴), Heng-Qing Tong(童恒庆), Xi-Ling Li(李喜玲). Chin. Phys. B, 2019, 28(9): 090501.
[13] Design new chaotic maps based on dimension expansion
Abdulaziz O A Alamodi, Kehui Sun(孙克辉), Wei Ai(艾维), Chen Chen(陈晨), Dong Peng(彭冬). Chin. Phys. B, 2019, 28(2): 020503.
[14] Dynamical stable-jump-stable-jump picture in a non-periodically driven quantum relativistic kicked rotor system
Hsincheng Yu(于心澄), Zhongzhou Ren(任中洲), Xin Zhang(张欣). Chin. Phys. B, 2019, 28(2): 020504.
[15] Enhancing von Neumann entropy by chaos in spin-orbit entanglement
Chen-Rong Liu(刘郴荣), Pei Yu(喻佩), Xian-Zhang Chen(陈宪章), Hong-Ya Xu(徐洪亚), Liang Huang(黄亮), Ying-Cheng Lai(来颖诚). Chin. Phys. B, 2019, 28(10): 100501.
No Suggested Reading articles found!