Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 034214    DOI: 10.1088/1674-1056/23/3/034214
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Spatiotemporal binary interaction and designer quasi-particle condensates

Ramaswamy Radhaa, Pattu Sakthi Vinayagama, Hyun Jong Shinb, Kuppuswamy Porsezianc
a Centre for Nonlinear Science, Post Graduate and Research Department of Physics, Government College for Women (Autonomous), Kumbakonam 612001, India;
b Department of Physics and Research Institute of Basic Sciences, Kyung Hee University, Seoul 130-701, Korea;
c Department of Physics, Pondicherry University, Pondicherry 605014, India
Abstract  We introduce a new integrable model to investigate the dynamics of two component quasi-particle condensates with spatiotemporal interaction strengths. We derive the associated Lax pair of the coupled Gross–Pitaevskii (GP) equation and construct matter wave solitons. We show that the spatiotemporal binary interaction strengths not only facilitate the stabilization of the condensates, but also enables one to fabricate condensates with desirable densities, geometries, and properties, leading to the so-called “designer quasi-particle condensates”.
Keywords:  gauge transformation      bright soliton      Gross–Pitaevskii (GP) equation  
Received:  21 June 2013      Revised:  29 August 2013      Accepted manuscript online: 
PACS:  42.81.Dp (Propagation, scattering, and losses; solitons)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
  05.45.Yv (Solitons)  
Fund: Project supported by the UGC, DAE-NBHM, and DST, Government of India.
Corresponding Authors:  Ramaswamy Radha     E-mail:  radha_ramaswamy@yahoo.com

Cite this article: 

Ramaswamy Radha, Pattu Sakthi Vinayagam, Hyun Jong Shin, Kuppuswamy Porsezian Spatiotemporal binary interaction and designer quasi-particle condensates 2014 Chin. Phys. B 23 034214

[1] Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198
[2] Davis K B, Mewes M O, Andrews M R, VanDruten N J, Durfee D S, Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 75 3969
[3] Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1999 Rev. Mod. Phys. 71 463
[4] Gross E P 1961 Nuovo Cimento 20 454
[5] Gross E P 1963 J. Math. Phys. 4 195
[6] Pitaevskii L P 1961 Zh. Eksp. Teor. Fiz. 40 646
[7] Liang Z X, Zhang Z D and Liu W M 2005 Phys. Rev. Lett. 94 050402
[8] Radha R and Ramesh Kumar V 2007 Phys. Lett. A 370 46
[9] Radha R, Ramesh Kumar V and Porzeian K 2008 J. Phys. A: Math. Theor. 41 315209
[10] Ramesh Kumar V, Radha R and Panigrahi P K 2008 Phys. Rev. A 77 023611
[11] Strecker K E, Partridge G B, Truscott A G and Hulet R G 2002 Nature 417 150
[12] Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y and Solomon C 2002 Science 296 1290
[13] Strecker K E, Partridge G B, Truscott A G and Hulet R G 2003 New J. Phys. 5 73
[14] Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K, Sanpera A, Shlyapnikov G V and Lewenstein M 1999 Phys. Rev. Lett. 83 5198
[15] Denschlag J, Simsarian J E, Feder D L, Clark C W, Collins L A, Cubizolles J, Deng L, Hagley E W, Helmerson K, Reinhardt W P, Rolston S L, Schneider B I and Phillips W D 2000 Science 287 97
[16] Papp S B, Pino J M and Wieman C E 2008 Phys. Rev. Lett. 101 040402
[17] Thalhammer G, Barontini G, De Sarlo L, Catani J, Minardi F and Inguscio M 2008 Phys. Rev. Lett. 100 210402
[18] Nathan Kutz J 2009 Physica D 238 1468
[19] MiddelKamp S, Chang J J, Hamner C, Carretero-Gonzalez R, Kevrekidis P G, Achilleos V, Frantzeskakis D J, Schmelcher P and Engels P 2011 Phys. Lett. A 375 642
[20] Theocharis G, Schmelcher P, Kevrekidis P G and Frantzeskakis D J 2005 Phys. Rev. A 72 033614
[21] Rajendran S, Muruganandam P and Lakshmanan M 2009 J. Phys. B: At. Mol. Opt. Phys. 42 145307
[22] Ramesh Kumar V, Radha R and Wadati M 2010 Phys. Lett. A 374 3685
[23] Rodas-Verde M I, Michinel H and Perez-Garcia V M 2005 Phys. Rev. Lett. 95 153903
[24] Carpentier A V, Michinel H, Rodas-Verde M I and Perez-Garcia V M 2006 Phys. Rev. A 74 013619
[25] Shin H J, Radha R and Ramesh Kumar V 2011 Phys. Lett. A 375 2519
[26] He J S, Mei J and Li Y S 2007 Chin. Phys. Lett. 24 2157
[27] He J S and Li Y S 2011 Stud. Appl. Math. 126 1
[28] Wang Y Y, He J S and Li Y S 2011 Commun. Theor. Phys. 56 995
[29] Xu S W, He J S and Wang L H 2012 Europhys. Lett. 97 30007
[30] He X G, Zhao D, Li L and Luo H G 2009 Phys. Rev. E 79 056610
[31] Wen L, Li L, Li Z D, Song S W, Zhang X F and Liu W M 2011 Eur. Phys. J. D 64 473
[32] Manakov S V 1974 Sov. Phys. JETP 38 248
[33] Chau L L, Shaw J C and Yen H C 1991 J. Math. Phys. 32 1737
[34] lizuka T and Wadati M 1997 J. Phys. Soc. Jpn. 66 2308
[1] Exact soliton solutions in anisotropic ferromagnetic wires with Dzyaloshinskii-Moriya interaction
Qiu-Yan Li(李秋艳), Dun-Zhao(赵敦), and Zai-Dong Li(李再东). Chin. Phys. B, 2021, 30(1): 017504.
[2] Stable soliton propagation in a coupled (2+1) dimensional Ginzburg-Landau system
Li-Li Wang(王丽丽), Wen-Jun Liu(刘文军). Chin. Phys. B, 2020, 29(7): 070502.
[3] Dynamics of three nonisospectral nonlinear Schrödinger equations
Abdselam Silem, Cheng Zhang(张成), Da-Jun Zhang(张大军). Chin. Phys. B, 2019, 28(2): 020202.
[4] Two types of ground-state bright solitons in a coupled harmonically trapped pseudo-spin polarization Bose–Einstein condensate
T F Xu(徐天赋). Chin. Phys. B, 2018, 27(1): 016702.
[5] Moving bright solitons in a pseudo-spin polarization Bose-Einstein condensate
Tian-Fu Xu(徐天赋), Yu-Feng Zhang(张玉峰), Lei-Chao Xu(许磊超), Zai-Dong Li(李再东). Chin. Phys. B, 2017, 26(10): 100304.
[6] Current-induced magnetic soliton solutions in a perpendicular ferromagnetic anisotropy nanowire
Li Qiu-Yan, Zhao Fei, He Peng-Bin, Li Zai-Dong. Chin. Phys. B, 2015, 24(3): 037508.
[7] Interactions between bright solitons in different species of Bose–Einstein condensates
Jia-Ren Yan, Jie Zhou. Chin. Phys. B, 2012, 21(6): 060304.
[8] Stabilised bright solitons in Bose—Einstein condensates in an expulsive parabolic and complex potential
Zhang Tao, Yang Zhan-Ying, Zhao Li-Chen, Yue Rui-Hong. Chin. Phys. B, 2010, 19(7): 070502.
[9] Bright and dark soliton solutions in growing Bose—Einstein condensates
Song Wei-Wei, Li Qiu-Yan, Li Zai-Dong, Fu Guang-Sheng. Chin. Phys. B, 2010, 19(7): 070503.
[10] Controlling the amplitude of soliton in agrowing Bose--Einstein condensate by means of Feshbach resonance
He Zhang-Ming, Wang Deng-Long, Zhang Wei-Xi, Wang Feng-Jiao, Ding Jian-Wen. Chin. Phys. B, 2008, 17(10): 3640-3643.
[11] The geometric phase of the quantum systems with slow but finite rate of the external time-dependent field
Jia Xin-Yan, Li Wei-Dong, Liang Jiu-Qing. Chin. Phys. B, 2007, 16(10): 2855-2861.
[12] Entanglement dynamics in two-component Bose--Einstein condensates
Hao Ya-Jiang, Liang Jiu-Qing. Chin. Phys. B, 2006, 15(6): 1161-1171.
[13] Berry phase of coupled two arbitrary spins in a time-varying magnetic field
He Ming-Ming, Chen Gang, Xu Chang-Tan. Chin. Phys. B, 2006, 15(5): 912-914.
[14] Direct approach to perturbation theory for bright solitons
Yan Jia-Ren, Ao Sheng-Mei, Yu Hui-You. Chin. Phys. B, 2005, 14(1): 28-32.
No Suggested Reading articles found!