Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 047808    DOI: 10.1088/1674-1056/22/4/047808
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A compact frequency selective stop-band splitter by using Fabry–Perot nanocavity in a T-shape waveguide

M Afshari Bavil, Sun Xiu-Dong
Department of Physics, Harbin Institute of Technology, Harbin 150001, China
Abstract  By utlizing Fabry-Perot (FP) nanocavity adjacent to T-shape gap waveguide ports, spectrally selective filtering is realized. When the wavelength of incident light corresponds to the resonance wavelength of the FP nanocavity, the surface plasmons are captured inside the nanocavity, and light is highly reflected from this port. The resonance wavelength is determined by using Fabry–Perot resonance condition for the nanocavity. For any desired filtering frequency the dimension of nanocavity can be tailored. The numerical results are based on the two-dimensional finite difference time domain simulation under a perfectly matched layer absorbing boundary condition. The analytical and simulation results indicate that the proposed structure can be utilized for filtering and splitting applications.
Keywords:  T-shape splitter      Fabry–Perot nanocavity      spectrally selective splitting      finite difference time domain (FDTD) simulation     
Received:  02 July 2012      Published:  01 March 2013
PACS:  78.68.+m (Optical properties of surfaces)  
  68.47.De (Metallic surfaces)  
  42.79.Fm (Reflectors, beam splitters, and deflectors)  
Fund: Project supported by the National Key Basic Research Program of China (Grant No. 2013CB328702).
Corresponding Authors:  Sun Xiu-Dong     E-mail:  xdsun@hit.edu.cn

Cite this article: 

M Afshari Bavil, Sun Xiu-Dong A compact frequency selective stop-band splitter by using Fabry–Perot nanocavity in a T-shape waveguide 2013 Chin. Phys. B 22 047808

[1] Raether H 1988 Surface Plasmon on Smooth and Rough Surfaces and on Gratings (Berlin: Springer-Verlag) p. 5
[2] Barnnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[3] Ozbay E 2006 Science 311 189
[4] Baida F I, Belkhir A, Labeke D V and Lamrous O 2006 Phys. Rev. B 74 205419
[5] Houseini A, Nejati H and Massoud Y 2008 Opt. Express 16 1475
[6] Verhagen E, Polman A and Kuipers L 2008 Opt. Express 16 45
[7] Lee H S, Yoon Y T, Lee S S, Kim S H and Lee K D 2007 Opt. Express 15 15457
[8] Xue W R, Guo Y N and Zhang W M 2010 Chin. Phys. B 19 017302
[9] Li X F, Pan S, Guo Y N and Wang Q 2011 Chin. Phys. B 20 015204
[10] Lee T and Gray S 2005 Opt. Express 13 9652
[11] Qi Y, Gan D, Ma J, Cui J, Wang C and Luo X 2009 Appl. Phys. B 95 807
[12] Gao H T, Shi H F, Wang C T, Du C L, Luo X G, Deng Q L, Lü Y G, Lin X D and Yao H M 2005 Opt. Express 13 10795
[13] Gong Y K, Liu X M, Wang L R and Zhang Y N 2011 Opt. Commun. 284 795
[14] He M D, Liu J Q, Gong Z Q, Luo Y F, Chen X S and Lu W 2010 Opt. Commun. 283 1784
[15] Bozhevolnyi S 2009 Plasmonic Nanoguides and Circuits (Singapore: Pan Stanford Publishing Pte. Ltd.) p. 200
[16] Shuford K L, Ratner M A, Gray S K and Schatz G C 2006 Appl. Phys. B 84 11
[17] Barnes W L 2006 J. Opt. A: Pure Appl. Opt. 8 S87
[1] Acoustic plasmonics of Au grating/Bi2Se3 thin film/sapphirehybrid structures
Weiwu Li(李伟武), Konstantin Riegel, Chuanpu Liu(刘传普), Alexey Taskin, Yoichi Ando, Zhimin Liao(廖志敏), Martin Dressel, Yuan Yan(严缘). Chin. Phys. B, 2020, 29(6): 067801.
[2] Tuning the intensity statistics of random speckle patterns
Fan Meng(孟凡), Yue Zhao(赵乐), Yun-Zuo Zhang(张云佐), Lei Huo(霍磊). Chin. Phys. B, 2019, 28(5): 057801.
[3] Geometrical condition for observing Talbot effect in plasmonics infinite metallic groove arrays
Afshari-Bavil Mehdi, Xiao-Ping Lou(娄小平), Ming-Li Dong(董明利), Chuan-Bo Li(李传波), Shuai Feng(冯帅), Parsa Saviz, Lian-Qing Zhu(祝连庆). Chin. Phys. B, 2018, 27(12): 124204.
[4] Selective enhancement of green upconversion luminescence of Er-Yb: NaYF4 by surface plasmon resonance of W18O49 nanoflowers and applications in temperature sensing
Ang Li(李昂), Jin-Lei Wu(吴金磊), Xue-Song Xu(许雪松), Yang Liu(刘洋), Ya-Nan Bao(包亚男), Bin Dong(董斌). Chin. Phys. B, 2018, 27(9): 097301.
[5] Hot spots enriched plasmonic nanostructure-induced random lasing of quantum dots thin film
Feng Shan(单锋), Xiao-Yang Zhang(张晓阳), Jing-Yuan Wu(吴静远), Tong Zhang(张彤). Chin. Phys. B, 2018, 27(4): 047804.
[6] Effects of thickness & shape on localized surface plasmon resonance of sexfoil nanoparticles
Yan Chen(陈艳), Xianchao Liu(刘贤超), Weidong Chen(陈卫东), Zhengwei Xie(谢征微), Yuerong Huang(黄跃容), Ling Li(李玲). Chin. Phys. B, 2017, 26(1): 017807.
[7] Different optical properties in different periodic slot cavity geometrical morphologies
Jing Zhou(周静), Meng Shen(沈萌), Lan Du(杜澜), Caisong Deng(邓彩松), Haibin Ni(倪海彬), Ming Wang(王鸣). Chin. Phys. B, 2016, 25(9): 097301.
[8] Spin-controlled directional launching of surface plasmons at the subwavelength scale
Tao Huang(黄韬), Jia-jian Wang(王佳见), Zi-wei Li(李梓维), Wei Liu(刘伟), Feng Lin(林峰), Zhe-yu Fang(方哲宇), Xing Zhu(朱星). Chin. Phys. B, 2016, 25(8): 087302.
[9] Second harmonic generation of metal nanoparticles under tightly focused illumination
Jing-Wei Sun(孙经纬), Xiang-Hui Wang(王湘晖), Sheng-Jiang Chang(常胜江),Ming Zeng(曾明), Na Zhang(张娜). Chin. Phys. B, 2016, 25(3): 037803.
[10] Infrared laser-induced fast photovoltaic effect observed in orthorhombic tin oxide film
Song-Qing Zhao(赵嵩卿), Ji-Rui Zhang(张际蕊), Hong-Jie Shi(施宏杰), Kun-Kun Yan(闫坤坤), Chun Huang(黄春), Li-Min Yang(杨立敏), Rui Yang(杨睿), Kun Zhao(赵昆). Chin. Phys. B, 2016, 25(2): 027202.
[11] Influences of Pr and Ta doping concentration on the characteristic features of FTO thin film deposited by spray pyrolysis
Güven Turgut, Adem Koçyiğit, Erdal Sönmez. Chin. Phys. B, 2015, 24(10): 107301.
[12] Speckle intensity images of target based on Monte Carlo method
Wu Ying-Li, Wu Zhen-Sen. Chin. Phys. B, 2014, 23(3): 037801.
[13] Subwavelength beam manipulation via multiple-metal slits coupled by disk-shaped nanocavity
Zheng Gai-Ge, Xu Lin-Hua, Pei Shi-Xin, Chen Yun-Yun. Chin. Phys. B, 2014, 23(3): 034213.
[14] Numerical investigation of the enhanced unidirectional surface plasmon polaritons generator
Zhang Zhi-Dong, Wang Hong-Yan, Zhang Zhong-Yue, Wang Hui. Chin. Phys. B, 2014, 23(1): 017801.
[15] Optical binding forces between plasmonic nanocubes:A numerical study based on discrete-dipole approximation
Zhang Xiao-Ming, Xiao Jun-Jun, Zhang Qiang. Chin. Phys. B, 2014, 23(1): 017302.
No Suggested Reading articles found!