Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 036103    DOI: 10.1088/1674-1056/22/3/036103

Radiation damage effects on power VDMOS devices with composite SiO2–Si3N4 films

Gao Bo, Liu Gang, Wang Li-Xin, Han Zheng-Sheng, Song Li-Mei, Zhang Yan-Fei, Teng Rui, Wu Hai-Zhou
Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
Abstract  Total dose effects and single event effects on radiation-hardened power vertical double-diffusion metal oxide semiconductor (VDMOS) devices with composite SiO2-–Si3N4 film gate are investigated. The relationships among the important electrical parameters of the samples with different thickness SiO2-–Si3N4 films, such as threshold voltage, breakdown voltage, and on-state resistance in accumulated dose, are discussed. The total dose experiment results show that the breakdown voltage and the on-state resistance barely change with the accumulated dose. However, the relationships between the threshold voltages of the samples and the accumulated dose are more complex, not only positive drift, but also negative drift. At the end of the total dose experiment, we select the group of samples which have the smaller threshold voltage shift to carry out the single event effect studies. We find that the samples with appropriate thickness ratio SiO2-–Si3N4 films have a good radiation-hardening ability. This method may be useful in solving both the SEGR and the total dose problems with the composite SiO2-–Si3N4 films.
Keywords:  power VDMOS device      total dose effects      single event effects      composite SiO2–Si3N4 films     
Received:  06 May 2012      Published:  01 February 2013
PACS:  61.82.Fk (Semiconductors)  
  61.80.Ed (γ-ray effects)  
  61.80.Jh (Ion radiation effects)  
  81.40.Wx (Radiation treatment)  
Corresponding Authors:  Gao Bo     E-mail:

Cite this article: 

Gao Bo, Liu Gang, Wang Li-Xin, Han Zheng-Sheng, Song Li-Mei, Zhang Yan-Fei, Teng Rui, Wu Hai-Zhou Radiation damage effects on power VDMOS devices with composite SiO2–Si3N4 films 2013 Chin. Phys. B 22 036103

[1] Dodd P E, Shaneyfelt M R, Draper B L, Young, R W, Savignon D, Witcher J B, Vizkelethy G, Schwanki J R, Shen Z J, Shea P, Landowski M and Dalton S M 2009 IEEE Trans. Nucl. Sci. 56 3456
[2] Haran A, Barak J, David D, Refaeli N, Fischer B E, Voss K O, Du G and Heiss M 2007 IEEE Trans. Nucl. Sci. 54 2488
[3] Zhang E X, Newaz A K M, Wang B, Bhandaru S, Zhang C X, Fleetwood D M, Bolotin K I, Pantelides S T, Alles M L, Schrimpf R D, Weiss S M, Reed R A and Weller R A 2011 IEEE Trans. Nucl. Sci. 58 2961
[4] Irom F, Nguyen D N, Underwood M L and Virtanen A 2010 IEEE Trans. Nucl. Sci. 57 3329
[5] Hands A, Morris P, Ryden K, Dyer C, Truscott P, Chugg A and Parker S 2011 IEEE Trans. Nucl. Sci. 58 2687
[6] Miller F, Luu A, Prud'homme F, Poirot P, Gaillard R, Buard N and Carrire T 2006 IEEE Trans. Nucl. Sci. 53 3145
[7] Liu S, Lauenstein J M, Ferlet-Cavrois V, Marec R, Hernandez F, Scheick L, Bezerra F, Muschitiello M, Poivey C, Sukhaseum N, Coquelet L, Cao H, Carrier D, Brisebois M A, Mangeret R, Ecoffet R, LaBel K, Zafrani M and Sherman P 2011 IEEE Trans. Nucl. Sci. 58 2991
[8] Johnson G H and Galloway K F 1996 IEEE Nuclear and Space Radiation Effects Conference Short Course, July 15-19, 1996 India Wells, California,
[9] Fraass R G and Tallon R W 1978 IEEE Trans. Nucl. Sci. 25 1613
[10] Dunn G J and Wyatt P W 1989 IEEE Trans. Nucl. Sci. 36 2161
[11] Ma T P, Yun B H, DiMaria D J and Scoggan G A 1976 J. Appl. Phys. 47 1599
[12] Zhang E X, Qian C, Zhang Z X, Wang X, Zhang G Q, Li N, Zheng Z S and Liu Z L 2005 Chin. J. Sem. 26 1269 (in Chinese)
[13] Zhang G Q, Lu W, Yu X F, Guo Q, Ren D Y and Yan R L 1999 Chin. J. Sem. 20 437 (in Chinese)
[14] Cricchi J R and Barbe D F 1971 Appl. Phys. Lett. 19 49
[15] Lee S C, Raparla A, Li Y F, Gasiot G, Schrimpf R D, Fleetwood D M, Galloway K F, Featherby M and Johnson D 2000 IEEE Trans. Nucl. Sci. 47 2297
[16] Takahashi Y, Ohnishi K, Fujimaki T and Yoshikawa M 1999 IEEE Trans. Nucl. Sci. 46 1578
[17] Saks N S 1978 IEEE Trans. Nucl. Sci. 25 1226
[1] Mechanisms of atmospheric neutron-induced single event upsets in nanometric SOI and bulk SRAM devices based on experiment-verified simulation tool
Zhi-Feng Lei(雷志锋), Zhan-Gang Zhang(张战刚), Yun-Fei En(恩云飞), Yun Huang(黄云). Chin. Phys. B, 2018, 27(6): 066105.
[2] Synergistic effect of total ionizing dose on single event effect induced by pulsed laser microbeam on SiGe heterojunction bipolar transistor
Jin-Xin Zhang(张晋新), Hong-Xia Guo(郭红霞), Xiao-Yu Pan(潘霄宇), Qi Guo(郭旗), Feng-Qi Zhang(张凤祁), Juan Feng(冯娟), Xin Wang(王信), Yin Wei(魏莹), Xian-Xiang Wu(吴宪祥). Chin. Phys. B, 2018, 27(10): 108501.
[3] Three-dimensional simulation of fabrication process-dependent effects on single event effects of SiGe heterojunction bipolar transistor
Jin-Xin Zhang(张晋新), Chao-Hui He(贺朝会), Hong-Xia Guo(郭红霞), Pei Li(李培), Bao-Long Guo(郭宝龙), Xian-Xiang Wu(吴宪祥). Chin. Phys. B, 2017, 26(8): 088502.
[4] Large energy-loss straggling of swift heavy ions in ultra-thin active silicon layers
Zhang Zhan-Gang, Liu Jie, Hou Ming-Dong, Sun You-Mei, Zhao Fa-Zhan, Liu Gang, Han Zheng-Sheng, Geng Chao, Liu Jian-De, Xi Kai, Duan Jing-Lai, Yao Hui-Jun, Mo Dan, Luo Jie, Gu Song, Liu Tian-Qi. Chin. Phys. B, 2013, 22(9): 096103.
[5] Angular dependence of multiple-bit upset response in static random access memories under heavy ion irradiation
Zhang Zhan-Gang, Liu Jie, Hou Ming-Dong, Sun You-Mei, Su Hong, Duan Jing-Lai, Mo Dan, Yao Hui-Jun, Luo Jie, Gu Song, Geng Chao, Xi Kai. Chin. Phys. B, 2013, 22(8): 086102.
[6] Impact of substrate bias on radiation-induced edge effects in MOSFETs
Hu Zhi-Yuan, Liu Zhang-Li, Shao-Hua, Zhang Zheng-Xuan, Ning Bing-Xu, Chen Ming, Bi Da-Wei, Zou Shi-Chang. Chin. Phys. B, 2011, 20(12): 120702.
No Suggested Reading articles found!