Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(11): 115204    DOI: 10.1088/1674-1056/22/11/115204
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Diagnostic technique for measuring fusion reaction rate for inertial confinement fusion experiments at Shen Guang-III prototype laser facility

Wang Feng (王峰)a, Peng Xiao-Shi (彭晓世)a, Kang Dong-Guo (康洞国)b, Liu Shen-Ye (刘慎业)a, Xu Tao (徐涛)a
a Research Center of Laser Fusion, Chinese Academy of Engineering Physics, Mianyang 621900, China;
b Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract  A study is conducted using a two-dimensional simulation program (Lared-s) with the goal of developing a technique to evaluate the effect of Rayleigh–Taylor growth in a neutron fusion reaction region. Two peaks of fusion reaction rate are simulated by using a two-dimensional simulation program (Lared-s) and confirmed by the experimental results. A neutron temporal diagnostic (NTD) system is developed with a high temporal resolution of ~ 30 ps at the Shen Guang-III (SG-III) prototype laser facility in China, to measure the fusion reaction rate history. With the shape of neutron reaction rate curve and the spherical harmonic function in this paper, the degree of Rayleigh–Taylor growth and the main source of the neutron yield in our experiment can be estimated qualitatively. This technique, including the diagnostic system and the simulation program, may provide important information for obtaining a higher neutron yield in implosion experiments of inertial confinement fusion.
Keywords:  inertial confinement fusion      Rayleigh–Taylor growth      neutron fusion reaction      implosion  
Received:  24 October 2012      Revised:  27 April 2013      Accepted manuscript online: 
PACS:  52.57.Fg (Implosion symmetry and hydrodynamic instability (Rayleigh-Taylor, Richtmyer-Meshkov, imprint, etc.))  
  42.87.-d (Optical testing techniques)  
  52.57.-z (Laser inertial confinement)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10805041), the Science and Technology on Plasma Physics Laboratory, China (Grant No. 9140C6801021001), and the Science and Technology Development Foundation of China Academy of Engineering Physics, China (Grant No. 2011B0102020).
Corresponding Authors:  Wang Feng     E-mail:  xiaozei7566@163.com

Cite this article: 

Wang Feng (王峰), Peng Xiao-Shi (彭晓世), Kang Dong-Guo (康洞国), Liu Shen-Ye (刘慎业), Xu Tao (徐涛) Diagnostic technique for measuring fusion reaction rate for inertial confinement fusion experiments at Shen Guang-III prototype laser facility 2013 Chin. Phys. B 22 115204

[1] Lindl J D, Amendt P, Berger R L, Glendining S G, Glenzer S H, Hann S W, Kauffman R L, Landen O L and Suter L J 2004 Phys. Plasmas 11 339
[2] Stoeckl C, Glebov V Y, Roberts S and Sangster T C 2003 Rev. Sci. Instrum. 74 1713
[3] Lerche R A and Cable M D 1996 UCRL-LR-105821-96-3
[4] Moran M J, Lerche R A and Mant G 2006 Rev. Sci. Instrum. 77 10E728
[6] Lerche R A, Phillion D W and Tietbohl G L 1995 Rev. Sci. Instrum. 66 933
[7] Rygg J R, Frenje J A, Li C K, Seguin F H, Petrasso R D, Marshall F J, Delettrez J A, Knauer J P, Meyerhofer D D and Stoeckl C 2008 Phys. Plasmas 15 034505
[8] Dittrich T R, Hammel B A, Keane C J, McEachern R, Turner R E, Hann S W and Suter L J 1994 Phys. Rev. Lett. 73 2324
[9] Fan Z F, Xue C, Wang L F, Ye W H and Zhu S P 2011 Phys. Plasmas 18 062108
[10] Zhang J and Chang T Q 2004 Fundaments of the Target Physics for Laser Fusion (Beijing: National Defence Industrial Press) p. 257
[11] Jiang S E, Miao W Y and Kuang L Y 2011 Acta Phys. Sin. 60 055206 (in Chinese)
[12] Tao Y S, Wang L F, Ye W H, Zhang G, Zhang J C and Li Y J 2012 Acta Phys. Sin. 61 075207 (in Chinese)
[1] Effect of initial phase on the Rayleigh—Taylor instability of a finite-thickness fluid shell
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), Jing Li(李景), and Ying-Jun Li(李英骏). Chin. Phys. B, 2022, 31(3): 035203.
[2] Magnetohydrodynamic Kelvin-Helmholtz instability for finite-thickness fluid layers
Hong-Hao Dai(戴鸿昊), Miao-Hua Xu(徐妙华), Hong-Yu Guo(郭宏宇), Ying-Jun Li(李英骏), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(12): 120401.
[3] A fitting formula for electron-ion energy partition fraction of 3.54-MeV fusion alpha particles in hot dense deuterium-tritium plasmas
Yan-Ning Zhang(张艳宁), Zhi-Gang Wang(王志刚), Yong-Tao Zhao(赵永涛), and Bin He(何斌). Chin. Phys. B, 2021, 30(1): 015202.
[4] Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers
S S Ban(班帅帅), Q Wang(王清), Z J Liu(刘占军), C Y Zheng(郑春阳), X T He(贺贤土). Chin. Phys. B, 2020, 29(9): 095202.
[5] Weakly nonlinear multi-mode Bell–Plesset growth in cylindrical geometry
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), and Ying-Jun Li(李英骏). Chin. Phys. B, 2020, 29(11): 115202.
[6] Hot-electron deposition and implosion mechanisms within electron shock ignition
Wan-Li Shang(尚万里)†, Xing-Sen Che(车兴森), Ao Sun(孙奥), Hua-Bing Du(杜华冰), Guo-Hong Yang(杨国洪), Min-Xi Wei(韦敏习), Li-Fei Hou(侯立飞), Yi-Meng Yang(杨轶濛), Wen-Hai Zhang(张文海), Shao-Yong Tu(涂绍勇), Feng Wang(王峰), Hai-En He(何海恩), Jia-Min Yang(杨家敏), Shao-En Jiang(江少恩), and Bao-Han Zhang(张保汉). Chin. Phys. B, 2020, 29(10): 105201.
[7] Numerical study on magneto-Rayleigh-Taylor instabilities for thin liner implosions on the primary test stand facility
Xiao-Guang Wang(王小光), Shun-Kai Sun(孙顺凯), De-Long Xiao(肖德龙), Guan-Qiong Wang(王冠琼), Yang Zhang(张扬), Shao-Tong Zhou(周少彤), Xiao-Dong Ren(任晓东), Qiang Xu(徐强), Xian-Bin Huang(黄显宾), Ning Ding(丁宁), Xiao-Jian Shu(束小建). Chin. Phys. B, 2019, 28(3): 035201.
[8] Influence analysis of symmetry on capsule in six-cylinder-port hohlraum
You Zou(邹游), Wudi Zheng(郑无敌), Xin Li(李欣). Chin. Phys. B, 2019, 28(3): 035203.
[9] Rayleigh-Taylor instability at spherical interfaces of incompressible fluids
Hong-Yu Guo(郭宏宇), Li-Feng Wang(王立锋), Wen-Hua Ye(叶文华), Jun-Feng Wu(吴俊峰), Ying-Jun Li(李英骏), Wei-Yan Zhang(张维岩). Chin. Phys. B, 2018, 27(2): 025206.
[10] Rayleigh-Taylor instability of multi-fluid layers in cylindrical geometry
Hong-Yu Guo(郭宏宇), Li-Feng Wang(王立锋), Wen-Hua Ye(叶文华), Jun-Feng Wu(吴俊峰), Wei-Yan Zhang(张维岩). Chin. Phys. B, 2017, 26(12): 125202.
[11] DD proton spectrum for diagnosing the areal density of imploded capsules on Shenguang Ⅲ prototype laser facility
Teng Jian (滕建), Zhang Tian-Kui (张天奎), Wu Bo (伍波), Pu Yu-Dong (蒲昱东), Hong Wei (洪伟), Shan Lian-Qiang (单连强), Zhu Bin (朱斌), He Wei-Hua (何卫华), Lu Feng (卢峰), Wen Xian-Lun (温贤伦), Zhou Wei-Min (周维民), Cao Lei-Feng (曹磊峰), Jiang Shao-En (江少恩), Gu Yu-Qiu (谷渝秋). Chin. Phys. B, 2014, 23(7): 075207.
[12] An improved deconvolution method for X-ray coded imaging in inertial confinement fusion
Zhao Zong-Qing (赵宗清), He Wei-Hua (何卫华), Wang Jian (王剑), Hao Yi-Dan (郝轶丹), Cao Lei-Feng (曹磊峰), Gu Yu-Qiu (谷渝秋), Zhang Bao-Han (张保汉). Chin. Phys. B, 2013, 22(10): 104202.
[13] Radiation characteristics and implosion dynamics of tungsten wire array Z-pinches on the YANG accelerator
Huang Xian-Bin(黄显宾), Yang Li-Bing(杨礼兵), Li Jing(李晶), Zhou Shao-Tong(周少彤), Ren Xiao-Dong(任晓东), Zhang Si-Qun(张思群), Dan Jia-Kun(但加坤), Cai Hong-Chun(蔡红春), Duan Shu-Chao(段书超) , Chen Guang-Hua(陈光华), Zhang Zheng-Wei(章征伟), Ouyang Kai(欧阳凯), Jun Li(李军), Zhang Zhao-Hui(张朝辉), Zhou Rong-Guo(周荣国), and Wang Gui-Lin(王贵林) . Chin. Phys. B, 2012, 21(5): 055206.
[14] Emission spectrum from an Al/Mg tracer in the blow-off region of a radiatively ablated capsule
Pu Yu-Dong(蒲昱东), Chen Bo-Lun(陈伯伦), Zhang Lu(张璐), Yang Jia-Ming(杨家敏), Huang Tian-Xuan(黄天晅), and Ding Yong-Kun(丁永坤) . Chin. Phys. B, 2011, 20(9): 095203.
[15] Analysis of Ar line spectra from indirectly-driven implosion experiments on SGII facility
Pu Yu-Dong(蒲昱东),Zhang Ji-Yan(张继彦),Yang Jia-Min(杨家敏), Huang Tian-Xuan(黄天晅),and Ding Yong-Kun(丁永坤). Chin. Phys. B, 2011, 20(1): 015202.
No Suggested Reading articles found!