Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(1): 015202    DOI: 10.1088/1674-1056/20/1/015202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Analysis of Ar line spectra from indirectly-driven implosion experiments on SGII facility

Pu Yu-Dong(蒲昱东),Zhang Ji-Yan(张继彦),Yang Jia-Min(杨家敏), Huang Tian-Xuan(黄天晅),and Ding Yong-Kun(丁永坤)
Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
Abstract  This paper reports on the indirectly-driven implosion experiments on SGII laser facility in which Ar emission spectrum from Ar-doped D-filled plastic capsule is recorded with the crystal spectrometer. Spectral features of Ar Heβ line and its associated satellites are analysed to extract the electron temperature and density of the implosion core. Non local thermal equilibrium (NLTE) collisional-radiative atomic kinetics and Strark broadening line shape are included in the present calculation. By comparing the calculated spectrum with the measured one, the core electron temperature and density are inferred to be 700 eV and 2.5×1023 cm-3 respectively. With these inferred values of electron temperature and density, neutron yield can be estimated to agree with the measured value in magnitude despite of the very simple model used for the estimation.
Keywords:  inertial confinement fusion      x-ray diagnostics  
Received:  01 June 2010      Revised:  21 July 2010      Accepted manuscript online: 
PACS:  52.27.-z  
  52.70.-m (Plasma diagnostic techniques and instrumentation)  
Fund: Project supported by the Science and Technology Foundation of State Key Laboratory of Plasma Physics (Grant No. 9140C6805100C68).

Cite this article: 

Pu Yu-Dong(蒲昱东),Zhang Ji-Yan(张继彦),Yang Jia-Min(杨家敏), Huang Tian-Xuan(黄天晅),and Ding Yong-Kun(丁永坤) Analysis of Ar line spectra from indirectly-driven implosion experiments on SGII facility 2011 Chin. Phys. B 20 015202

[1] John D, Lindl, Peter Amendt and Richard L. Berger 2004 Phys. Plasma 11 339
[2] Woolsey N C 1997 Phys. Rev. E 56 2314
[3] Cable M D and Hatchett S P 1987 J. Appl. Phys. 62 2233
[4] Chen J B, Zheng Z J and Peng H S 2001 Rev. Sci. Instru. 72 3534
[5] Hammel B A 1993 Phys. Rev. Lett. 70 1263
[6] Duan Bin 2007 J. At. Mol. Phys. 1000-0364(2007)supplement-001-04 (in Chinese)
[7] Duan B, Li M Y, Fang Q Y and Zhang J Y 2005 High Power Laser and Particle Beams 17 55 (in Chinese)
[8] Pu Y D, Huang T X and Miao W Y 2010 High Power Laser and Particle Beams bf22 (in Chinese)
[9] Gu M F 2003 ApJ 582 1241
[10] Smith 1967 Phys. Rev. 157 126
[11] Hooper 1966 Phys. Rev. 149 77
[12] John T O'Brien 1972 Phys. Rev. A 5 867
[13] Kolb A C 1958 Phys. Rev. 111 514
[14] Smith 1968 Phys. Rev. 166 102
[15] John T O'Brien 1974 J. Quant. Spectrosc. Radiat. Transfer 14 479
[16] Cowan 1981 The Theory of Atomic Structure and Spectra (California: University of California Press)
[17] Golovkin I E 2000 Journal Quant. Spect. Radiat. Transfer 65 273
[18] Keane C J 1993 Phys. Fluids B 3 3328
[19] Regan S P 2002 Phys. of Plasmas 9 1357
[20] Mancini 1991 Computer Physics Communications 63 314
[21] Stefano Atzeni 2004 Inertial Fusion Beam Plasma Interaction, Hydrodynamics, Dense Plasma Physics (New York: Oxford University Press)
[1] Effect of initial phase on the Rayleigh—Taylor instability of a finite-thickness fluid shell
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), Jing Li(李景), and Ying-Jun Li(李英骏). Chin. Phys. B, 2022, 31(3): 035203.
[2] Magnetohydrodynamic Kelvin-Helmholtz instability for finite-thickness fluid layers
Hong-Hao Dai(戴鸿昊), Miao-Hua Xu(徐妙华), Hong-Yu Guo(郭宏宇), Ying-Jun Li(李英骏), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(12): 120401.
[3] A fitting formula for electron-ion energy partition fraction of 3.54-MeV fusion alpha particles in hot dense deuterium-tritium plasmas
Yan-Ning Zhang(张艳宁), Zhi-Gang Wang(王志刚), Yong-Tao Zhao(赵永涛), and Bin He(何斌). Chin. Phys. B, 2021, 30(1): 015202.
[4] Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers
S S Ban(班帅帅), Q Wang(王清), Z J Liu(刘占军), C Y Zheng(郑春阳), X T He(贺贤土). Chin. Phys. B, 2020, 29(9): 095202.
[5] Weakly nonlinear multi-mode Bell–Plesset growth in cylindrical geometry
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), and Ying-Jun Li(李英骏). Chin. Phys. B, 2020, 29(11): 115202.
[6] Hot-electron deposition and implosion mechanisms within electron shock ignition
Wan-Li Shang(尚万里)†, Xing-Sen Che(车兴森), Ao Sun(孙奥), Hua-Bing Du(杜华冰), Guo-Hong Yang(杨国洪), Min-Xi Wei(韦敏习), Li-Fei Hou(侯立飞), Yi-Meng Yang(杨轶濛), Wen-Hai Zhang(张文海), Shao-Yong Tu(涂绍勇), Feng Wang(王峰), Hai-En He(何海恩), Jia-Min Yang(杨家敏), Shao-En Jiang(江少恩), and Bao-Han Zhang(张保汉). Chin. Phys. B, 2020, 29(10): 105201.
[7] Influence analysis of symmetry on capsule in six-cylinder-port hohlraum
You Zou(邹游), Wudi Zheng(郑无敌), Xin Li(李欣). Chin. Phys. B, 2019, 28(3): 035203.
[8] Rayleigh-Taylor instability at spherical interfaces of incompressible fluids
Hong-Yu Guo(郭宏宇), Li-Feng Wang(王立锋), Wen-Hua Ye(叶文华), Jun-Feng Wu(吴俊峰), Ying-Jun Li(李英骏), Wei-Yan Zhang(张维岩). Chin. Phys. B, 2018, 27(2): 025206.
[9] Diagnostic technique for measuring fusion reaction rate for inertial confinement fusion experiments at Shen Guang-III prototype laser facility
Wang Feng (王峰), Peng Xiao-Shi (彭晓世), Kang Dong-Guo (康洞国), Liu Shen-Ye (刘慎业), Xu Tao (徐涛). Chin. Phys. B, 2013, 22(11): 115204.
[10] An improved deconvolution method for X-ray coded imaging in inertial confinement fusion
Zhao Zong-Qing (赵宗清), He Wei-Hua (何卫华), Wang Jian (王剑), Hao Yi-Dan (郝轶丹), Cao Lei-Feng (曹磊峰), Gu Yu-Qiu (谷渝秋), Zhang Bao-Han (张保汉). Chin. Phys. B, 2013, 22(10): 104202.
[11] Emission spectrum from an Al/Mg tracer in the blow-off region of a radiatively ablated capsule
Pu Yu-Dong(蒲昱东), Chen Bo-Lun(陈伯伦), Zhang Lu(张璐), Yang Jia-Ming(杨家敏), Huang Tian-Xuan(黄天晅), and Ding Yong-Kun(丁永坤) . Chin. Phys. B, 2011, 20(9): 095203.
No Suggested Reading articles found!