Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 010307    DOI: 10.1088/1674-1056/22/1/010307
GENERAL Prev   Next  

Continuous variable entanglement generation in coupled cavities

Pan Gui-Xiaa b, Xiao Rui-Jiea, Zhou Linga
a School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China;
b School of Science, Anhui University of Science and Technology, Huainan 232001, China
Abstract  We investigate continuous variable entanglement produced in two distant coupled cavities, in which two four-level atoms are driven by classical fields respectively. Under the large detuning condition, an effective Hamiltonian containing the square of creation (annihilation) operator of cavity field is derived. Due to the nonlinearity, entanglement formally created by the beam splitter type interaction is transformed into the nondegenerate parametric down conversion type. Employing the operator algebraic method, we study the time evolution of entanglement condition, and show that the system provides us advantage in achieving a larger photon number with better entanglement. We also discuss the dissipation of the cavities affecting the entanglement.
Keywords:  continuous variable entanglement      coupled cavities      nondegenerate parametric down conversion      cavity dissipation     
Received:  11 June 2012      Published:  01 December 2012
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11074028).
Corresponding Authors:  Zhou Ling     E-mail:

Cite this article: 

Pan Gui-Xia, Xiao Rui-Jie, Zhou Ling Continuous variable entanglement generation in coupled cavities 2013 Chin. Phys. B 22 010307

[1] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wooters W K 1993 Phys. Rev. Lett. 70 1895
[2] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[3] Davidovich L, Brune M, Raimond J M and Haroche S 1996 Phys. Rev. A 53 1295
[4] Zheng, S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
[5] Wang B and Duan L M 2005 Phys. Rev. A 72 022320
[6] He G, Zhu J and Zeng G 2006 Phys. Rev. A 73 012314
[7] Zhou L, Xiong H and Zubairy M S 2006 Phys. Rev. A 74 022321
[8] Zhang Y J, Ren T Q and Xia Y J 2008 Chin. Phys. 17 1972
[9] Zheng S B 2008 Chin. Phys. 17 2143
[10] Zhou L, Mu Q X and Liu Z J 2009 Phys. Lett. A 373 2017
[11] Mu Q X, Ma Y H and Zhou L 2010 Phys. Rev. A 81 024301
[12] Li X Y, Pan Q, Jing J, Zhang J, Xie C and Peng K 2002 Phys. Rev. Lett. 88 047904
[13] Zhang J, Xie C, Peng K and Loock P V 2008 Phys. Rev. A 77 022316
[14] Loock P V and Braunstein S 2001 Phys. Rev. Lett. 87 247901
[15] Yonezawa H, Aokl T and Furusawa A 2004 Nature 431 430
[16] Ma Y H, Zhao X Y and Zhou L 2009 Phys. Lett. A 373 2025
[17] Tan H T, Zhu S Y and Zubairy M S 2005 Phys. Rev. A 72 022305
[18] Adamyan H H and Kryuchkyan G Y 2004 Phys. Rev. A 69 053814
[19] Xiong H, Scully M O and Zubairy M S 2005 Phys. Rev. Lett. 94 023601
[20] Jing J, Zhang J, Yan Y, Zhao F, Xie C and Peng K 2003 Phys. Rev. Lett. 90 167903
[21] Tan H T and Li G X 2011 Phys. Rev. A 84 024301
[22] Ikram M, Li G X and Zubairy M S 2007 Phys. Rev. A 76 042317
[23] Zhou L and Xiong H 2008 J. Phys. B: At. Mol. Opt. Phys. 41 025501
[24] Li G X, Wu S P and Huang G M 2005 Phys. Rev. A 71 063817
[25] Li G X, Yang Y P, Allaart K and Lenstra D 2004 Phys. Rev. A 69 014301
[26] Agarwal G S 1986 Phys. Rev. Lett. 57 827
[27] Slusher R E, Hollberg L W, Yurke B, Mertz J C and Valley J F 1985 Phys. Rev. Lett. 55 2409
[28] Ou Z Y, Pereira S F, Kimble H J and Peng K C 1992 Phys. Rev. Lett. 68 3663
[29] Simon C and Bouwmeester D 2003 Phys. Rev. Lett. 91 053601
[30] Zhang Y, Wang H, Li X, Jing J, Xie C and Peng K 2000 Phys. Rev. A 62 023813
[31] Zheng S B, Yang Z B and Xia Y 2010 Phys. Rev. A 81 015804
[32] Shen L T, Chen X Y, Yang Z B, Wu H Z and Zheng S B 2011 Phys. Rev. A 84 064302
[33] Song J, Sun X D, Xia Y and Song H S 2011 Phys. Rev. A 83 052309
[34] Yang Z B, Xia Y and Zheng S B 2010 Opt. Commun. 283 3052
[35] Yan W B, Liu Z J and Zhou L 2011 Opt. Commun. 284 2250
[36] Tan H T, Zhang W M and Li G X 2011 Phys. Rev. A 83 062310
[37] Mckeever J, Boca A, Boozer A D, Buck J R and Kimble H J 2003 Nature 425 268
[38] Cho J, Angelakis D G and Bose S 2008 Phys. Rev. A 78 022323
[39] Lu H X, Yang J, Zhang Y D and Chen Z B 2003 Phys. Rev. A 67 024101
[40] Duan L M, Giedke G, Cirac J I and Zoller P 2000 Phys. Rev. Lett. 84 2722
[41] Mu Q X, Ma Y H, Zhou L 2009 J. Phys. A 42 225304
[1] Entanglement of two two-level atoms trapped in coupled cavities with a Kerr medium
Wu Qin, Zhang Zhi-Ming. Chin. Phys. B, 2014, 23(3): 034203.
[2] Quantum dynamic behaviour in a coupled cavities system
Peng Jun, Wu Yun-Wen, Li Xiao-Juan. Chin. Phys. B, 2012, 21(6): 060302.
[3] Effect of cavity dissipation on the emission spectrum of an atom interacting with a field in the dispersive approximation
Wang Hai-Jun, Gao Yun-Feng. Chin. Phys. B, 2010, 19(1): 014209.
No Suggested Reading articles found!