Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(9): 094213    DOI: 10.1088/1674-1056/21/9/094213
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Rear-surface light intensification caused by Hertzian-conical crack in 355-nm silica optics

Zhang Chun-Lai (章春来)a, Yuan Xiao-Dong (袁晓东)b, Xiang Xia (向霞)a, Wang Zhi-Guo (王治国)a, Liu Chun-Ming (刘春明)a b, Li Li (李莉)a, He Shao-Bo (贺少勃)a b, Zu Xiao-Tao (祖小涛)a
a School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China;
b Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
Abstract  Theoretical studies show that the Hertzian-conical crack can be considered to be composed of double cone faces for simplification. In the present study, the three-dimensional finite-difference time-domain method is employed to quantify the electric-field distribution within the subsurface in the presence of such a defect under the normal incidence irradiation. Both impurities (inside the crack) and the chemical etching have been investigated. The results show that the maximum electric field amplitude |E| max is 9.57374 V/m when the relative dielectric constant of transparent impurity equals 8.5. And the near-field modulation will be improved if the crack filled with remainder polishing powders or water vapor/drops. Meanwhile, the laser-induced initial damage is moving to the glass-air surface. In the etched section, the magnitude of intensification is strongly dependent on the inclination angle θ. There will be a highest modulation when θ is around π /6, and the maximum value of |E| max is 18.57314 V/m. When θ ranges from π /8 to π /4, the light intensity enhancement factor can easily be larger than 100, and the modulation follows a decreasing trend. On the other hand, the modulation curves become smooth when θ > π /4 or θ < π /8.
Keywords:  fused silica      wet etching      Hertzian-conical crack      finite-difference time-domain method  
Received:  01 January 2012      Revised:  17 March 2012      Accepted manuscript online: 
PACS:  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
  42.62.-b (Laser applications)  
  42.70.Ce (Glasses, quartz)  
  52.57.-z (Laser inertial confinement)  
Fund: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 10904008), the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. 11076008), and the Scientific Research Foundation for the Central Universities of China (Grant Nos. ZYGX2009X007, ZYGX2010J045, and ZYGX2011J043).
Corresponding Authors:  Xiang Xia     E-mail:  xiaxiang@uestc.edu.cn

Cite this article: 

Zhang Chun-Lai (章春来), Yuan Xiao-Dong (袁晓东), Xiang Xia (向霞), Wang Zhi-Guo (王治国), Liu Chun-Ming (刘春明), Li Li (李莉), He Shao-Bo (贺少勃), Zu Xiao-Tao (祖小涛) Rear-surface light intensification caused by Hertzian-conical crack in 355-nm silica optics 2012 Chin. Phys. B 21 094213

[1] Génin F Y, Feit M D, Kozlowski M R, Rubenchik A M, Salleo A and Yoshiyama J 2000 Appl. Opt. 39 3654
[2] Li C H, Ju X, Jiang X D, Huang J, Zhou X D, Zheng Z, Wu W D, Zheng W G, Li Z X, Wang B Y and Yu X H 2011 Opt. Express 19 6439
[3] Wang F R, Liu H J, Huang J, Zhou X D, Jiang X D, Wu W D, Zheng W G and Ju X 2011 Chin. Phys. Lett. 28 014206
[4] Zhang C L, Li X B, Wang Z G, Liu C M, Xiang X, Lv H B, Yuan X D and Zu X T 2011 Chin. Phys. Lett. 28 074205
[5] Suratwala T, Wong L, Miller P, Feit M D, Menapace J, Steele R, Davis P and Walmer D 2006 J. Non-Cryst. Solids 352 5601
[6] Wong L, Suratwala T, Feit M D, Miller P E and Steele R 2009 J. Non-Cryst. Solids 355 797
[7] Chen M, Xiang X, Jiang Y, Zu X T, Yuan X D, Zheng W G, Wang H J, Li X B, Lv H B, Jiang X D and Wang C C 2010 High Power Laser and Part. Beams 22 1383 (in Chinese)
[8] Bouchut P, Garrec P and Pelle C 2003 Proc. SPIE 4932 103
[9] Hrubesh L W, Norton M A, Molander W A, Wegner P J, Staggs M, Demos S G, Britten J A, Summers L J, Lindsey E F and Kozlowski M R 2001 Proc. SPIE 4374 553
[10] Génin F Y, Salleo A, Pistor T V and Chase L L 2001 J. Opt. Soc. Am. A 18 2607
[11] Hua J R, Zu X T, Li L, Xiang X, Chen M, Jiang X D, Yuan X D and Zheng W G 2010 Acta Phys. Sin. 59 2519 (in Chinese)
[12] Qiu S R, Wolfe J E, Monterrosa A M, Feit M D, Pistor T V and Stolz C J 2009 Proc. SPIE 7504 75040M
[13] Qiu S R, Wolfe J E, Monterrosa A M, Feit M D, Pistor T V and Stolz C J 2011 Appl. Opt. 50 C373
[14] Salleo A 2001 High-Power Laser Damage in Fused Silica (PhD Dissertation) (Berkeley: University of California, Berkeley)
[15] Li J, Yang F Q, Wang Z and Dong J F 2011 Acta Phys. Sin. 60 114104 (in Chinese)
[16] Li X L, Zhang L S, Sun J and Feng X M 2012 Acta Phys. Sin. 61 044202 (in Chinese)
[1] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[2] Wet etching and passivation of GaSb-based very long wavelength infrared detectors
Xue-Yue Xu(许雪月), Jun-Kai Jiang(蒋俊锴), Wei-Qiang Chen(陈伟强), Su-Ning Cui(崔素宁), Wen-Guang Zhou(周文广), Nong Li(李农), Fa-Ran Chang(常发冉), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Dong-Wei Jiang(蒋洞微), Dong-Hai Wu(吴东海), Hong-Yue Hao(郝宏玥), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(6): 068503.
[3] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
[4] Optical modulation of repaired damage site on fused silica produced by CO2 laser rapid ablation mitigation
Chao Tan(谭超), Lin-Jie Zhao(赵林杰), Ming-Jun Chen(陈明君), Jian Cheng(程健), Zhao-Yang Yin(尹朝阳), Qi Liu(刘启), Hao Yang(杨浩), Wei Liao(廖威). Chin. Phys. B, 2020, 29(5): 054209.
[5] Time-dependent photothermal characterization on damage of fused silica induced by pulsed 355-nm laser with high repetition rate
Chun-Yan Yan(闫春燕), Bao-An Liu(刘宝安), Xiang-Cao Li(李香草), Chang Liu(刘畅), Xin Ju(巨新). Chin. Phys. B, 2020, 29(2): 027901.
[6] Damage characteristics of laser plasma shock wave on rear surface of fused silica glass
Xiong Shen(沈雄), Guo-Ying Feng(冯国英), Sheng Jing(景晟), Jing-Hua Han(韩敬华), Ya-Guo Li(李亚国), Kai Liu(刘锴). Chin. Phys. B, 2019, 28(8): 085202.
[7] Propagation characteristics of oblique incidence terahertz wave through non-uniform plasma
Antao Chen(陈安涛), Haoyu Sun(孙浩宇), Yiping Han(韩一平), Jiajie Wang(汪加洁), Zhiwei Cui(崔志伟). Chin. Phys. B, 2019, 28(1): 014201.
[8] Intense supercontinuum generation in the near-ultraviolet range from a 400-nm femtosecond laser filament array in fused silica
Dongwei Li(李东伟), Lanzhi Zhang(张兰芝), Saba Zafar, He Song(宋鹤), Zuoqiang Hao(郝作强), Tingting Xi(奚婷婷), Xun Gao(高勋), Jingquan Lin(林景全). Chin. Phys. B, 2017, 26(7): 074213.
[9] Silica-based microcavity fabricated by wet etching
H Long(龙浩), W Yang(杨文), L Y Ying(应磊莹), B P Zhang(张保平). Chin. Phys. B, 2017, 26(5): 054211.
[10] Investigation of three-pulse photon echo in thick crystal using finite-difference time-domain method
Xiu-Rong Ma(马秀荣), Lin Xu(徐林), Shi-Yuan Chang(常世元), Shuang-Gen Zhang(张双根). Chin. Phys. B, 2017, 26(4): 044201.
[11] Improvement of laser damage thresholds of fused silica by ultrasonic-assisted hydrofluoric acid etching
Yuan Li(李源), Hongwei Yan(严鸿维), Ke Yang(杨科), Caizhen Yao(姚彩珍), Zhiqiang Wang(王志强), Chunyan Yan(闫春燕), Xinshu Zou(邹鑫书), Xiaodong Yuan(袁晓东), Liming Yang(杨李茗), Xin Ju(巨新). Chin. Phys. B, 2017, 26(11): 118104.
[12] Optical simulation of in-plane-switching blue phase liquid crystal display using the finite-difference time-domain method
Hu Dou(窦虎), Hongmei Ma(马红梅), Yu-Bao Sun(孙玉宝). Chin. Phys. B, 2016, 25(9): 094221.
[13] Stable structure and optical properties of fused silica with NBOHC-E' defect
Peng-Fei Lu(芦鹏飞), Li-Yuan Wu(伍力源), Yang Yang(杨阳), Wei-Zheng Wang(王唯正), Chun-Fang Zhang(张春芳), Chuang-Hua Yang(杨创华), Rui Su(苏锐), Jun Chen(陈军). Chin. Phys. B, 2016, 25(8): 086801.
[14] Self-aligned-gate AlGaN/GaN heterostructure field-effect transistor with titanium nitride gate
Jia-Qi Zhang(张家琦), Lei Wang(王磊), Liu-An Li(李柳暗), Qing-Peng Wang(王青鹏), Ying Jiang(江滢), Hui-Chao Zhu(朱慧超), Jin-Ping Ao(敖金平). Chin. Phys. B, 2016, 25(8): 087308.
[15] Correlation of polishing-induced shallow subsurface damages with laser-induced gray haze damages in fused silica optics
Xiang He(何祥), Heng Zhao(赵恒), Gang Wang(王刚), Peifan Zhou(周佩璠), Ping Ma(马平). Chin. Phys. B, 2016, 25(8): 088105.
No Suggested Reading articles found!