Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 084101    DOI: 10.1088/1674-1056/21/8/084101
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

HEM11 mode magnetically insulated transmission[2mm] line oscillator: simulation and experiment

Wang Dong (王冬), Qin Fen (秦奋), Wen Jie (文杰), Chen Dai-Bing (陈代兵), Jin Xiao (金晓), An Hai-Shi (安海狮), Zhang Xin-Kai (张新凯 )
Laboratory of High Power Microwave Technology, Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900, China
Abstract  A novel magnetically insulated transmission line oscillator (MILO) in which a modified HEM11 mode is taken as its main interaction mode (HEM11 mode MILO) is simulated and experimented in this paper. The excitation of the oscillation mode is made possible by carefully adjusting the arrangement of each resonant cavity in a two-dimensional slow wave structure. The special feature of such a device is that in the slow-wave-structure region, the interaction mode is HEM11 mode which is a TM-like one that could interact with electron beams effectively; and in the coaxial output region, the microwave mode is TE11 mode which has a favourable field density pattern to be directly radiated. Employing an electron beam of about 441 kV and 39.7 kA, HEM11 mode MILO generates a high power microwave output of about 1.47 GW at 1.45 GHz in particle-in-cell simulation. The power conversion efficiency is about 8.4 % and the generated microwave is in a TE11-like circular polarization mode. In a preliminary experiment investigation, high power microwave is detected from the device with a frequency of 1.46 GHz, an output energy of 43 J-47 J, and a pulse duration of 44 ns-49 ns when the input voltage is 430 kV-450 kV, and the diode current is 37 kA-39 kA.
Keywords:  high power microwave      magnetically insulated transmission line oscillator      asymmetric mode      HEM11 mode  
Received:  15 October 2011      Revised:  04 January 2012      Accepted manuscript online: 
PACS:  41.60.Bq (Cherenkov radiation)  
  41.75.Ht (Relativistic electron and positron beams)  
Corresponding Authors:  Wang Dong     E-mail:  mr20001@sina.com

Cite this article: 

Wang Dong (王冬), Qin Fen (秦奋), Wen Jie (文杰), Chen Dai-Bing (陈代兵), Jin Xiao (金晓), An Hai-Shi (安海狮), Zhang Xin-Kai (张新凯 ) HEM11 mode magnetically insulated transmission[2mm] line oscillator: simulation and experiment 2012 Chin. Phys. B 21 084101

[1] Lemke R W and Clark M C 1987 IEEE Trans. Plasma Sci. 62 3436
[2] Lemke R W, Calico S E and Clark M C 1997 IEEE Trans. Plasma Sci. 25 364
[3] Ashby D E T F, Eastwood J W, Allen J, Hawkins K C and Lea L M 1995 IEEE Trans. Plasma Sci. 23 959
[4] Eastwood J W, Hawkins K C and Hook M P 1998 IEEE Trans. Plasma Sci. 26 698
[5] Haworth M D, Engler T J T, Hendricks K J, Lemke R W, Luginsland J W, Shiffler D S and Spencer T A 2000 Rev. Sci. Instrum. 71 1539
[6] Chen D B, Fan Z K, Dong Z W, Xu Z, Zhou H J, Guo Y H, He H, Gong H T and An H S 2006 Proc. EAPPC 549
[7] Haworth M D, Luginsland J W and Lemke R W 2001 IEEE Trans. Plasma Sci. 29 388
[8] Haworth M D, Cartwright K L, Luginsland J W, Shiffler D A and Umstattd R J 2002 IEEE Trans. Plasma Sci. 30 992
[9] Yuan C W, Liu Q X and Zhong H H 2005 High Power Laser and Particle Beams 17 1405 (in Chinese)
[10] Wang D, Fan Z K, Chen D B and Deng J K 2008 Acta Phys. Sin. 57 4875 (in Chinese)
[11] Wang D, Chen D B and Fan Z K 2008 Proceedings of the 17th International Conferences on High-Power Particle Beams, July 7-11, Xi'an, China p. 692
[12] Wang D, Chen D B, Qin F and Fan Z K 2009 Chin. Phys. B 18 4281
[13] Chen D B, Meng F B, Wang D and Fan Z K 2007 High Power Microwave Technology 15 1 (in Chinese)
[14] Chen D B, Wang D, Meng F B and Fan Z K 2009 IEEE Trans. Plasma Sci. 37 23
[15] Chen D B, Wang D, Fan Z K, Meng F B, An H S, Gong H T and Qin F 2009 Acta Phys. Sin. 58 4548 (in Chinese)
[16] Wang D, Qin F, Chen D B, Wen J, Zhang X K and An H H 2010 High Power Laser and Particle Beams 22 857 (in Chinese)
[1] C band microwave damage characteristics of pseudomorphic high electron mobility transistor
Qi-Wei Li(李奇威), Jing Sun(孙静), Fu-Xing Li(李福星), Chang-Chun Chai(柴常春), Jun Ding(丁君), and Jin-Yong Fang(方进勇). Chin. Phys. B, 2021, 30(9): 098502.
[2] A compact dual-band radiation system
Yuan-Qiang Yu(于元强), Yu-Wei Fan(樊玉伟), and Xiao-Yu Wang(王晓玉)$. Chin. Phys. B, 2020, 29(11): 118402.
[3] Modes decomposition in particle-in-cell software CEMPIC
Aiping Fang(方爱平)†, Shanshan Liang(梁闪闪), Yongdong Li(李永东), Hongguang Wang(王洪广), and Yue Wang(王玥). Chin. Phys. B, 2020, 29(10): 100205.
[4] Transmission properties of microwave in rectangular waveguide through argon plasma
Xiaoyu Han(韩晓宇), Dawei Li(李大伟), Meie Chen(陈美娥), Zhan Zhang(张展), Zheng Li(李铮), Yujian Li(李雨键), Junhong Wang(王均宏). Chin. Phys. B, 2019, 28(3): 035204.
[5] A low-outgassing-rate carbon fiber array cathode
An-Kun Li(李安昆), Yu-Wei Fan(樊玉伟), Bao-Liang Qian(钱宝良), Zi-Cheng Zhang(张自成), Tao Xun(荀涛). Chin. Phys. B, 2018, 27(2): 028401.
[6] Air breakdown induced by the microwave with two mutually orthogonal and heterophase electric field components
Pengcheng Zhao(赵朋程), Lixin Guo(郭立新). Chin. Phys. B, 2017, 26(9): 099201.
[7] Damage effect and mechanism of the GaAs high electron mobility transistor induced by high power microwave
Yang Liu(刘阳), Chang-Chun Chai(柴常春), Yin-Tang Yang(杨银堂), Jing Sun(孙静), Zhi-Peng Li(李志鹏). Chin. Phys. B, 2016, 25(4): 048504.
[8] Simulation and experimental study of high power microwave damage effect on AlGaAs/InGaAs pseudomorphic high electron mobility transistor
Yu Xin-Hai (于新海), Chai Chang-Chun (柴常春), Liu Yang (刘阳), Yang Yin-Tang (杨银堂), Xi Xiao-Wen (席晓文). Chin. Phys. B, 2015, 24(4): 048502.
[9] A tunable magnetically insulated transmission line oscillator
Fan Yu-Wei (樊玉伟), Wang Xiao-Yu (王晓玉), He Liang (赫亮), Zhong Hui-Huang (钟辉煌), Zhang Jian-De (张建德). Chin. Phys. B, 2015, 24(3): 035203.
[10] Hardening measures for bipolar transistor against microwave-induced damage
Chai Chang-Chun (柴常春), Ma Zhen-Yang (马振洋), Ren Xing-Rong (任兴荣), Yang Yin-Tang (杨银堂), Zhao Ying-Bo (赵颖博), Yu Xin Hai (于新海). Chin. Phys. B, 2013, 22(6): 068502.
[11] Pulsed microwave damage trend of bipolar transistor as a function of pulse parameters
Ma Zhen-Yang (马振洋), Chai Chang-Chun (柴常春), Ren Xing-Rong (任兴荣), Yang Yin-Tang (杨银堂), Zhao Ying-Bo (赵颖博), Qiao Li-Ping (乔丽萍 ). Chin. Phys. B, 2013, 22(2): 028502.
[12] Experimental investigation of a compact relativistic magnetron with axial TE11 mode radiation
Li Wei (李伟), Liu Yong-Gui (刘永贵), Shu Ting (舒挺), Qian Bao-Liang (钱宝良 ). Chin. Phys. B, 2012, 21(8): 088401.
[13] Effects of microwave pulse-width damage on a bipolar transistor
Ma Zhen-Yang(马振洋), Chai Chang-Chun(柴常春), Ren Xing-Rong(任兴荣), Yang Yin-Tang(杨银堂), Chen Bin(陈斌), and Zhao Ying-Bo(赵颖博) . Chin. Phys. B, 2012, 21(5): 058502.
[14] Chiral asymmetry of anti-symmetric coordinates studied by the Raman differential bond polarizability of S-phenylethylamine
Shen Hong-Xia (沈红霞), Wu Guo-Zhen (吴国祯), Wang Pei-Jie (王培杰). Chin. Phys. B, 2012, 21(12): 123301.
[15] Magnetically insulated transmission line oscillator oscillated in a modified HEM11 mode
Wang Dong(王冬), Chen Dai-Bing(陈代兵), Qin Fen(秦奋), and Fan Zhi-Kai(范植开). Chin. Phys. B, 2009, 18(10): 4281-4286.
No Suggested Reading articles found!