Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 084201    DOI: 10.1088/1674-1056/21/8/084201
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Optimum design of photoresist thickness for 90-nm critical dimension based on ArF laser lithography

Chen De-Liang (陈德良), Cao Yi-Ping (曹益平), Huang Zhen-Fen (黄振芬), Lu Xi (卢熙), Zhai Ai-Ping (翟爱平 )
Department of Opto-Electronics, Sichuan University, Chengdu 610065, China
Abstract  In this work, a 90-nm critical dimension (CD) technological process in an ArF laser lithography system is simulated, and the swing curves of the CD linewidth changing with photoresist thickness are obtained in the absence and presence of bottom antireflection coating (BARC). By analysing the simulation result, it can be found that in the absence of BARC the CD swing curve effect is very bigger than that in the presence of BARC. So, the BARC should be needed for the 90-nm CD manufacture. The optimum resist thickness for 90-nm CD in the presence of BARC is obtained, and the optimizing process in this work can be used for reference in practice.
Keywords:  lithography      optimization      photoresist thichness      critical dimension      swing curve  
Received:  10 December 2011      Revised:  20 January 2012      Accepted manuscript online: 
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.25.Kb (Coherence)  
  42.30.Kq (Fourier optics)  
  42.70.Gi (Light-sensitive materials)  
Fund: Project supported by the National Special Program of China (Grant No. 2009ZX02204-008) and the National Basic Research Program of China (Grant No. 2007AA01Z333).
Corresponding Authors:  Cao Yi-Ping     E-mail:  ypcao@scu.edu.cn

Cite this article: 

Chen De-Liang (陈德良), Cao Yi-Ping (曹益平), Huang Zhen-Fen (黄振芬), Lu Xi (卢熙), Zhai Ai-Ping (翟爱平 ) Optimum design of photoresist thickness for 90-nm critical dimension based on ArF laser lithography 2012 Chin. Phys. B 21 084201

[1] Zhang W T, Zhu B H, Huang J and Xiong X M 2011 Acta Phys. Sin. 60 103203 (in Chinese)
[2] Ma B, Ma Y, Zhao M, Ma S S and Wang Z S 2006 Acta Phys. Sin. 55 667 (in Chinese)
[3] Zhang W T, Zhu B H and Xiong X M 2009 Acta Phys. Sin. 58 8199 (in Chinese)
[4] Korka J E 1970 Appl. Opt. 9 969
[5] Mack C A 1986 Appl. Opt. 25 1958
[6] Brunner T A 1991 SPIE 1466 297
[7] Tanaka T, Hasegawa N, Shiraishi H and Okazaki S 1990 J. Electrochem. Soc. 137 3900
[8] André S and Patrick S 2000 Opt. Eng. 39776
[9] Dijkstra H J and Juffermans C 1993 SPIE 1927 275
[10] Dammel R R and Norwood R A 1996 SPIE 2724 754
[11] Miura S S, Lyons C F and Brunner T A 1992 SPIE 1674 147
[12] Ahrens R G and Tennant D M 1999 Microelectronic Engineering 35 229
[13] Hopkins H H 1957 J. Opt. Soc. Am. 47 508
[14] Hopkins H H 1953 Proc. R. Soc. Lond. A 217 408
[15] Dill F H, Neureuther A R and Tuttle J A 1975 IEEE Trans. Electron Dev. 22 456
[16] Bernard D A 1987 Phillips Journal of Research 42 566
[17] Mack C A 1985 SPIE 538 207
[18] Mack C 2007 Fundamental Principles of Optical Lithography: The Science of Microfabrication (West Sussex: Jhon Wiley & Sons. Ltd) p. 133
[19] Ioannis K 2000 IEEE Transactions on Semiconductor Manufacturing 13 61
[20] Mack C 2007 Fundamental Principles of Optical Lithography: The Science of Microfabrication (West Sussex: Jhon Wiley & Sons. Ltd) p. 146
[1] Performance optimization on finite-time quantum Carnot engines and refrigerators based on spin-1/2 systems driven by a squeezed reservoir
Haoguang Liu(刘浩广), Jizhou He(何济洲), and Jianhui Wang(王建辉). Chin. Phys. B, 2023, 32(3): 030503.
[2] Comparison of differential evolution, particle swarm optimization, quantum-behaved particle swarm optimization, and quantum evolutionary algorithm for preparation of quantum states
Xin Cheng(程鑫), Xiu-Juan Lu(鲁秀娟), Ya-Nan Liu(刘亚楠), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(2): 020202.
[3] Traffic flow of connected and automated vehicles at lane drop on two-lane highway: An optimization-based control algorithm versus a heuristic rules-based algorithm
Huaqing Liu(刘华清), Rui Jiang(姜锐), Junfang Tian(田钧方), and Kaixuan Zhu(朱凯旋). Chin. Phys. B, 2023, 32(1): 014501.
[4] Characterization of a nano line width reference material based on metrological scanning electron microscope
Fang Wang(王芳), Yushu Shi(施玉书), Wei Li(李伟), Xiao Deng(邓晓), Xinbin Cheng(程鑫彬), Shu Zhang(张树), and Xixi Yu(余茜茜). Chin. Phys. B, 2022, 31(5): 050601.
[5] Thermal apoptosis analysis considering injection behavior optimization and mass diffusion during magnetic hyperthermia
Yun-Dong Tang(汤云东), Jian Zou(邹建), Rodolfo C C Flesch(鲁道夫 C C 弗莱施), Tao Jin(金涛), and Ming-Hua He(何明华). Chin. Phys. B, 2022, 31(1): 014401.
[6] Probing structural and electronic properties of divalent metal Mgn+1 and SrMgn (n = 2–12) clusters and their anions
Song-Guo Xi(奚松国), Qing-Yang Li(李青阳), Yan-Fei Hu(胡燕飞), Yu-Quan Yuan(袁玉全), Ya-Ru Zhao(赵亚儒), Jun-Jie Yuan(袁俊杰), Meng-Chun Li(李孟春), and Yu-Jie Yang(杨雨杰). Chin. Phys. B, 2022, 31(1): 016106.
[7] Topology optimization method of metamaterials design for efficient enhanced transmission through arbitrary-shaped sub-wavelength aperture
Pengfei Shi(史鹏飞), Yangyang Cao(曹阳阳), Hongge Zhao(赵宏革), Renjing Gao(高仁璟), and Shutian Liu(刘书田). Chin. Phys. B, 2021, 30(9): 097806.
[8] Erratum to “Designing thermal demultiplexer: Splitting phonons by negative mass and genetic algorithm optimization”
Yu-Tao Tan(谭宇涛), Lu-Qin Wang(王鲁钦), Zi Wang(王子), Jiebin Peng(彭洁彬), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(9): 099902.
[9] Large-area fabrication: The next target of perovskite light-emitting diodes
Hang Su(苏杭), Kun Zhu(朱坤), Jing Qin(钦敬), Mengyao Li(李梦瑶), Yulin Zuo(左郁琳), Yunzheng Wang(王允正), Yinggang Wu(吴迎港), Jiawei Cao(曹佳维), and Guolong Li(李国龙). Chin. Phys. B, 2021, 30(8): 088502.
[10] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
[11] Efficient sampling for decision making in materials discovery
Yuan Tian(田原), Turab Lookman, and Dezhen Xue(薛德祯). Chin. Phys. B, 2021, 30(5): 050705.
[12] Designing thermal demultiplexer: Splitting phonons by negative mass and genetic algorithm optimization
Yu-Tao Tan(谭宇涛), Lu-Qin Wang(王鲁钦), Zi Wang(王子), Jiebin Peng(彭洁彬), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 036301.
[13] Complex coordinate rotation method based on gradient optimization
Zhi-Da Bai(白志达), Zhen-Xiang Zhong(钟振祥), Zong-Chao Yan(严宗朝), and Ting-Yun Shi(史庭云). Chin. Phys. B, 2021, 30(2): 023101.
[14] Distributed optimization for discrete-time multiagent systems with nonconvex control input constraints and switching topologies
Xiao-Yu Shen(沈小宇), Shuai Su(宿帅), and Hai-Liang Hou(侯海良). Chin. Phys. B, 2021, 30(12): 120507.
[15] A new algorithm for reconstructing the three-dimensional flow field of the oceanic mesoscale eddy
Chao Yan(颜超), Jing Feng(冯径), Ping-Lv Yang(杨平吕), and Si-Xun Huang(黄思训). Chin. Phys. B, 2021, 30(12): 120204.
No Suggested Reading articles found!