Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(3): 030503    DOI: 10.1088/1674-1056/21/3/030503
GENERAL Prev   Next  

Adaptive projective synchronization of different chaotic systems with nonlinearity inputs

Niu Yu-Juna,Wang Xing-Yuanb,Pei Bing-Nana
1. School of Information Engineering, Dalian University, Dalian 116622, China;
2. School of Electronic & Information Engineering, Dalian University of Technology, Dalian 116024, China
Abstract  We investigate the projective synchronization of different chaotic systems with nonlinearity inputs. Based on the adaptive technique, sliding mode control method and pole assignment technique, a novel adaptive projective synchronization scheme is proposed to ensure the drive system and the response system with nonlinearity inputs can be rapidly synchronized up to the given scaling factor.
Keywords:  projective synchronization      adaptive technique      sliding mode control      nonlinearity input  
Received:  03 August 2011      Revised:  25 September 2011      Published:  15 February 2012
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Vx (Communication using chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60971107 and 60973152) and the Natural Science Foundation of Liaoning Province, China (Grant No. 20082165).
Corresponding Authors:  Niu Yu-Jun,     E-mail:

Cite this article: 

Niu Yu-Jun,Wang Xing-Yuan,Pei Bing-Nan Adaptive projective synchronization of different chaotic systems with nonlinearity inputs 2012 Chin. Phys. B 21 030503

[1] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[2] Carroll T L and Pecora L M 1991 IEEE Trans. Circuits Syst. 38 453
[3] Chen G and Dong X 1993 IEEE Trans. Circuits Syst. I 40 591
[4] An H L and Chen Y 2008 Chin. Phys. B 17 98
[5] Chen G and Dong X 1998 From Chaos to Order: Methodologies, Perspectives and Applications (Singapore: World Scientific)
[6] Yang D S, Zhang H G, Zhao Y, Song C H and Wang Y C 2010 Acta Phys. Sin. 59 1562 (in Chinese)
[7] Zhang H, Xie Y, Wang Z and Zheng C 2007 IEEE Trans. Neural Networks 18 1841
[8] Zhang R X and Yang S P 2008 Chin. Phys. B 17 4097
[9] Zou Y L and Zhu J 2006 Chin. Phys. 15 1965
[10] Shinbrot T, Grebogi C, Yorke J and Ott E 1993 Nature 363 411
[11] Jia Z, Lu J A, Deng G M and Zhang Q J 2007 Chin. Phys. 16 1246
[12] Zhang H G, Ma T D, Fu J and Tong S C 2009 Chin. Phys. B 18 3742
[13] Wang X Y and Zhao Q 2008 Acta Phys. Sin. 57 2812 (in Chinese)
[14] Li C L and Luo X S 2009 Acta Phys. Sin. 58 3759 (in Chinese)
[15] Liu Z B, Zhang H G and Sun Q Y 2010 Chin. Phys. B 19 090506
[16] Mainieri R and Rehacek J 1999 Phys. Rev. Lett. 82 3042
[17] Xu D and Li Z 2002 Int. J. Bifurcation and Chaos 12 1395
[18] Li Z and Xu D 2001 Phys. Lett. A 282 175
[19] Chee C Y and Xu D 2005 Chaos Solitons Fract. 23 1063
[20] Li K Z, Zhao M C and Fu X C 2009 IEEE Trans Circuits Syst. I 56 2280
[21] Hu M F and Xu Z Y 2007 Chin. Phys. 16 3231
[22] Du H Y, Zeng Q S and Wang C H 2008 Phys. Lett. A 372 5402
[23] Dai H, Jia L X, Hui M and Si G Q 2011 Chin. Phys. B 20 040507
[24] L? L, Chai Y and Luan L 2010 Chin. Phys. B 19 080506
[25] Wang X Y and He Y J 2008 Acta Phys. Sin. 57 1485 (in Chinese)
[26] Luo L X, Xu Z Y and Hu M F 2008 Chin. Phys. B 17 4067
[27] Zeng C Y, Sun M and Tian L X 2010 Acta Phys. Sin. 59 5288 (in Chinese)
[28] Zhang Q J and Lu J A 2007 Phys. Lett. A 372 1416
[29] Hung Y C, Yan J J and Liao T L 2008 Math. Comput. Simulat. 77 374
[30] Gutierrez H M and Ro P I 1998 IEEE Trans. Ind. Electron. 45 921
[31] Utkin V I 1978 Sliding Mode and Their Application in Variable Structure Systems (Moscow: Mir)
[32] Itkis U 1976 Control System of Variable Structure (New York: Wiley)
[33] Popov V M 1973 Hyperstability of Control System (Berlin: Springer-Verlag)
[34] Lorenz E N 1963 J. Atmos Sci. 20 130
[35] Chen G and Ueta T 1999 Int. J. Bifurcation and Chaos 9 1465
[36] L? J and Chen G 2002 Int. J. Bifurcation and Chaos 12 659
[1] Fixed time integral sliding mode controller and its application to the suppression of chaotic oscillation in power system
Jiang-Bin Wang(王江彬), Chong-Xin Liu(刘崇新), Yan Wang(王琰), Guang-Chao Zheng(郑广超). Chin. Phys. B, 2018, 27(7): 070503.
[2] A new four-dimensional chaotic system with first Lyapunov exponent of about 22, hyperbolic curve and circular paraboloid types of equilibria and its switching synchronization by an adaptive global integral sliding mode control
Jay Prakash Singh, Binoy Krishna Roy, Zhouchao Wei(魏周超). Chin. Phys. B, 2018, 27(4): 040503.
[3] Finite-time robust control of uncertain fractional-order Hopfield neural networks via sliding mode control
Yangui Xi(喜彦贵), Yongguang Yu(于永光), Shuo Zhang(张硕), Xudong Hai(海旭东). Chin. Phys. B, 2018, 27(1): 010202.
[4] Dynamic analysis and fractional-order adaptive sliding mode control for a novel fractional-order ferroresonance system
Ningning Yang(杨宁宁), Yuchao Han(韩宇超), Chaojun Wu(吴朝俊), Rong Jia(贾嵘), Chongxin Liu(刘崇新). Chin. Phys. B, 2017, 26(8): 080503.
[5] Inverse full state hybrid projective synchronizationfor chaotic maps with different dimensions
Adel Ouannas, Giuseppe Grassi. Chin. Phys. B, 2016, 25(9): 090503.
[6] Robust pre-specified time synchronization of chaotic systems by employing time-varying switching surfaces in the sliding mode control scheme
Alireza Khanzadeh, Mahdi Pourgholi. Chin. Phys. B, 2016, 25(8): 080501.
[7] Controlling chaos based on a novel intelligent integral terminal sliding mode control in a rod-type plasma torch
Safa Khari, Zahra Rahmani, Behrooz Rezaie. Chin. Phys. B, 2016, 25(5): 050201.
[8] Robust sliding mode control for fractional-order chaotic economical system with parameter uncertainty and external disturbance
Zhou Ke, Wang Zhi-Hui, Gao Li-Ke, Sun Yue, Ma Tie-Dong. Chin. Phys. B, 2015, 24(3): 030504.
[9] Full-order sliding mode control of uncertain chaos in a permanent magnet synchronous motor based on a fuzzy extended state observer
Chen Qiang, Nan Yu-Rong, Zheng Heng-Huo, Ren Xue-Mei. Chin. Phys. B, 2015, 24(11): 110504.
[10] Finite-time sliding mode synchronization of chaotic systems
Ni Jun-Kang, Liu Chong-Xin, Liu Kai, Liu Ling. Chin. Phys. B, 2014, 23(10): 100504.
[11] Generalized projective synchronization of the fractional-order chaotic system using adaptive fuzzy sliding mode control
Wang Li-Ming, Tang Yong-Guang, Chai Yong-Quan, Wu Feng. Chin. Phys. B, 2014, 23(10): 100501.
[12] Adaptive function projective synchronization of uncertain complex dynamical networks with disturbance
Wang Shu-Guo, Zheng Song. Chin. Phys. B, 2013, 22(7): 070503.
[13] Generalized projective synchronization of two coupled complex networks with different sizes
Li Ke-Zan, He En, Zeng Zhao-Rong, Chi K. Tse. Chin. Phys. B, 2013, 22(7): 070504.
[14] Synchronization of uncertain fractional-order chaotic systems with disturbance based on fractional terminal sliding mode controller
Wang Dong-Feng, Zhang Jin-Ying, Wang Xiao-Yan. Chin. Phys. B, 2013, 22(4): 040507.
[15] Modified projective synchronization with complex scaling factors of uncertain real chaos and complex chaos
Zhang Fang-Fang, Liu Shu-Tang, Yu Wei-Yong. Chin. Phys. B, 2013, 22(12): 120505.
No Suggested Reading articles found!