Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(3): 030304    DOI: 10.1088/1674-1056/21/3/030304
GENERAL Prev   Next  

Generation of a new bipartite coherent-entangled state and its applications

Zhang Bao-Laia,Meng Xiang-Guob,Wang Ji-Suob c
1. Dongchang College of Liaocheng University, Liaocheng 252000, China;
2. Department of Physics, Liaocheng University, Liaocheng 252059, China;
3. Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, College of Physics and Engineering, Qufu Normal University, Qufu 273165, China
Abstract  A new bipartite coherent-entangled state is introduced in the two-mode Fock space, which exhibits the properties of both a coherent state and an entangled state. The set of coherent-entangled states makes up a complete and partly nonorthogonal representation. A simple experimental scheme to produce the coherent-entangled state using an asymmetric beamsplitter is proposed. Some applications of the coherent-entangled state in quantum optics are also presented.
Keywords:  bipartite coherent-entangled state      asymmetric beamsplitter      Einstein-Podolsky-Rosen entangled state      squeezed state  
Received:  03 August 2011      Revised:  21 September 2011      Published:  15 February 2012
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  42.79.Fm (Reflectors, beam splitters, and deflectors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11147009), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2010AQ027), and the Shandong Provincial Higher Educational Science and Technology Program, China (Grant No. J09LA07).
Corresponding Authors:  Wang Ji-Suo,jswang@lcu.edu.cn     E-mail:  jswang@lcu.edu.cn

Cite this article: 

Zhang Bao-Lai,Meng Xiang-Guo,Wang Ji-Suo Generation of a new bipartite coherent-entangled state and its applications 2012 Chin. Phys. B 21 030304

[1] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[2] Dirac P A M 1958 The Principles of Quantum Mechanics (Oxford: Clarendon Press)
[3] Fan H Y and Klauder J R 1994 Phys. Rev. A 49 704
[4] Cochrane P T and Milburn G J 2001 Phys. Rev. A 64 062312
[5] Fan H Y 2004 Inter. J. Mod. Phys. B 18 1387
[6] Meng X G, Wang J S and Liang B L 2011 Chin. Phys. B 20 050303
[7] Meng X G, Wang J S and Liang B L 2011 Int. J. Theor. Phys. 50 906
[8] Preskill J 1998 Quantum Information and Computation (California: California Institute of Technology)
[9] Campos R A, Saleh B E A and Teich M C 1989 Phys. Rev. A 50 5274
[10] Sudarshan E C G 1963 Phys. Rev. Lett. 10 277
[11] Dodonov V V, Malkin I A and Man'ko V I 1974 Physica 72 597
[12] Agarwal G S and Tara K 1991 Phys. Rev. A 43 492
[13] Xu S M, Xu X L, Li H Q and Wang J S 2009 Chin. Phys. B 18 2129
[1] Evolution of quantum states via Weyl expansion in dissipative channel
Li-Yun Hu(胡利云), Zhi-Ming Rao(饶志明), Qing-Qiang Kuang(况庆强). Chin. Phys. B, 2019, 28(8): 084206.
[2] On the nonclassical dynamics of cavity-assisted four-channel nonlinear coupler
Rafael Julius, Abdel-Baset M A Ibrahim, Pankaj Kumar Choudhury, Hichem Eleuch. Chin. Phys. B, 2018, 27(11): 114206.
[3] Deformed photon-added entangled squeezed vacuum and one-photon states: Entanglement, polarization, and nonclassical properties
A Karimi, M K Tavassoly. Chin. Phys. B, 2016, 25(4): 040303.
[4] New operator-ordering identities and associative integration formulas of two-variable Hermite polynomials for constructing non-Gaussian states
Fan Hong-Yi, Wang Zhen. Chin. Phys. B, 2014, 23(8): 080301.
[5] Photon number cumulant expansion and generating function for photon added- and subtracted-two-mode squeezed states
Lu Dao-Ming, Fan Hong-Yi. Chin. Phys. B, 2014, 23(2): 020302.
[6] Wave functions of a new kind of nonlinearsingle-mode squeezed state
Fan Hong-Yi, Da Cheng, Chen Jun-Hua. Chin. Phys. B, 2014, 23(12): 120302.
[7] Squeeze-swapping by Bell measurement studied in terms of the entangled state representation
Li Xue-Chao, Xie Chuan-Mei, Fan Hong-Yi. Chin. Phys. B, 2012, 21(8): 080304.
[8] On the role of the uncertainty principle in superconductivity and superfluidity
Roberto Onofrio. Chin. Phys. B, 2012, 21(7): 070306.
[9] Demonstrating additional law of relativistic velocities based on squeezed light
Yang Da-Bao, Li Yan, Zhang Fu-Lin, Chen Jing-Ling. Chin. Phys. B, 2012, 21(7): 074201.
[10] Generation of a squeezed state at 1.55 μ with periodically poled LiNbO3
Liu Qin, Feng Jin-Xia, Li Hong, Jiao Yue-Chun, Zhang Kuan-Shou. Chin. Phys. B, 2012, 21(10): 104204.
[11] Generation of squeezed TEMM01 modes with periodically poled KTiOPO4 crystal
Yang Rong-Guo, Sun Heng-Xin, Zhang Jun-Xiang, Gao Jiang-Rui. Chin. Phys. B, 2011, 20(6): 060305.
[12] The q-analogues of two-mode squeezed states constructed by virtue of the IWOP technique
Meng Xiang-Guo, Wang Ji-Suo, Li Hong-Qi. Chin. Phys. B, 2008, 17(8): 2973-2978.
[13] Security of quantum key distribution using two-mode squeezed states against optimal beam splitter attack
He Guang-Qiang, Zhu Si-Wei, Guo Hong-Bin, Zeng Gui-Hua. Chin. Phys. B, 2008, 17(4): 1263-1268.
[14] Single-mode quadrature-amplitude measurement for generalized two-mode squeezed states studied by virtue of the entangled state representation
Xu Xue-Fen. Chin. Phys. B, 2006, 15(1): 235-241.
[15] Thermodynamics of squeezed states in mesoscopic circuits
Ji Ying-Hua, Luo Hai-Mei, Liu Qing, Lei Min-Sheng. Chin. Phys. B, 2005, 14(6): 1227-1231.
No Suggested Reading articles found!