Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 104204    DOI: 10.1088/1674-1056/21/10/104204
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Generation of a squeezed state at 1.55 μ with periodically poled LiNbO3

Liu Qin, Feng Jin-Xia, Li Hong, Jiao Yue-Chun, Zhang Kuan-Shou
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
Abstract  We report on the generation of a squeezing vacuum at 1.55 μm using an optical parametric amplifier based on periodically poled LiNbO3. Using three specifically designed narrow linewidth mode cleaners as the spatial mode and noise filter of the laser at 1.55 μm and 775 nm, the squeezed vacuum of up to 3.0 dB below the shot noise level at 1.55 μm is experimentally obtained. This system is compatible with standard telecommunication optical fibers, and will be useful for continuous variable long-distance quantum communication and distributed quantum computing.
Keywords:  squeezed states      telecommunication wavelength of 1.55 μm      optical parametric amplifier  
Received:  18 January 2012      Revised:  20 March 2012      Published:  01 September 2012
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
  42.65.Yj (Optical parametric oscillators and amplifiers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60878003), the Science Foundation for Excellent Research Team of the National Natural Science Foundation of China (Grant No. 61121064), and the National Basic Research Program of China (Grant No. 2010CB923101).
Corresponding Authors:  Feng Jin-Xia     E-mail:  fengjx@sxu.edu.cn

Cite this article: 

Liu Qin, Feng Jin-Xia, Li Hong, Jiao Yue-Chun, Zhang Kuan-Shou Generation of a squeezed state at 1.55 μ with periodically poled LiNbO3 2012 Chin. Phys. B 21 104204

[1] Feng J X, Tian X T, Li Y M and Zhang K S 2008 Appl. Phys. Lett. 92 221102
[2] Mehmet M, Steinlechner S, Eberle T, Vahlbruch H, Thring A, Danzmann K and Schnabel R 2009 Opt. Lett. 34 1060
[3] Mehmet M, Eberle T, Steinlechner S, Vahlbruch H and Schnabel R 2010 Opt. Lett. 35 1665
[4] Miya T, Terunuma Y, Hosaka T and Moyashito T 1979 Electron. Lett. 15 106
[5] Rowan S, Hough J and Crooks D R M 2005 Phys. Lett. A 347 25
[6] Schnabel R, Britzger M, Brückner F, Burmeister O, Danzmann K, Dück J, Eberle T, Friedrich D, Lück H, Mehmet M, Nawrodt R, Steinlechner S and Willke B 2010 J. Phys.: Conf. Ser. 228 012029
[7] Silberhorn C, Lam P K, Wei O, König F, Korolkova N and Leuchs G 2001 Phys. Rev. Lett. 86 4267
[8] Eto Y, Tajima T, Zhang Y and Hirano T 2007 Opt. Lett. 32 1698
[9] Dong R, Heersink J, Corney J, Drummond P, Andersen U and Leuchs G 2008 Opt. Lett. 33 116
[10] Feng J X, Li Y M, Tian X T, Liu J L and Zhang K S 2008 Opt. Express 16 11871
[11] Wu L A, Kimble H J, Hall J L and Wu H 1986 Phys. Rev. Lett. 57 2520
[12] Vahlbruch H, Mehmet M, Chelkowski S, Hage B, Franzen A, Lastzka N, Goβler S, Danzmann K and Schnabel R 2008 Phys. Rev. Lett. 100 033602
[13] Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J and Ward H 1983 Appl. Phys. B 31 97
[14] Willke B, Uehara N, Gustafson E K, Byer R L, King P J, Seel S U and Savage R L 1998 Opt. Lett. 23 1704.
[15] Machida S and Yamamoto Y 1986 IEEE QE-22 617
[16] Vahibruch H, Chelkowski S, Hage B, Franzen A, Danzmann K and Schnabel R 2006 Phys. Rev. Lett. 97 011101
[17] Goda K, Miyakawa O, Mikhailov E E, Saraf S, Adhikari R, McKenzie K, Ward R, Vass S, Weinstein A J and Mavalvala N 2008 Nature Phys. 4 472
[18] Eberle T, Handchen V, Duhme J, Franz T, Werner R F and Schnabel R 2011 Phys. Rev. A 83 052329
[1] Femtosecond laser user facility for application research on ultrafast science
Zhaohua Wang(王兆华), Shaobo Fang(方少波), Hao Teng(滕浩), Hainian Han(韩海年), Xinkui He(贺新奎), Zhiyi Wei(魏志义). Chin. Phys. B, 2018, 27(7): 074204.
[2] On the nonclassical dynamics of cavity-assisted four-channel nonlinear coupler
Rafael Julius, Abdel-Baset M A Ibrahim, Pankaj Kumar Choudhury, Hichem Eleuch. Chin. Phys. B, 2018, 27(11): 114206.
[3] Entanglement of movable mirror and cavity field enhanced by an optical parametric amplifier
Cai-yun Zhang(张彩云), Hu Li(李虎), Gui-xia Pan(潘桂侠), Zong-qiang Sheng(圣宗强). Chin. Phys. B, 2016, 25(7): 074202.
[4] Generation of entangled TEM01 modes withperiodically poled KTiOPO4 crystal
Rong-Guo Yang(杨荣国), Jing-jing Wang(王晶静), Jing Zhang(张静), Heng-Xin Sun(孙恒信). Chin. Phys. B, 2016, 25(7): 074208.
[5] Deformed photon-added entangled squeezed vacuum and one-photon states: Entanglement, polarization, and nonclassical properties
A Karimi, M K Tavassoly. Chin. Phys. B, 2016, 25(4): 040303.
[6] Effect of the dispersion on multipartite continuous-variable entanglement in optical parametric amplifier
Zhao Chao-Ying. Chin. Phys. B, 2015, 24(4): 040302.
[7] New operator-ordering identities and associative integration formulas of two-variable Hermite polynomials for constructing non-Gaussian states
Fan Hong-Yi, Wang Zhen. Chin. Phys. B, 2014, 23(8): 080301.
[8] Photon number cumulant expansion and generating function for photon added- and subtracted-two-mode squeezed states
Lu Dao-Ming, Fan Hong-Yi. Chin. Phys. B, 2014, 23(2): 020302.
[9] Wave functions of a new kind of nonlinearsingle-mode squeezed state
Fan Hong-Yi, Da Cheng, Chen Jun-Hua. Chin. Phys. B, 2014, 23(12): 120302.
[10] Amplification of fluorescence using collinear picosecond optical parametric amplification at degeneracy
Zhang Jing, Zhang Qiu-Lin, Jiang Man, Zhang Dong-Xiang, Feng Bao-Hua, Zhang Jing-Yuan. Chin. Phys. B, 2012, 21(8): 084211.
[11] Demonstrating additional law of relativistic velocities based on squeezed light
Yang Da-Bao, Li Yan, Zhang Fu-Lin, Chen Jing-Ling. Chin. Phys. B, 2012, 21(7): 074201.
[12] On the role of the uncertainty principle in superconductivity and superfluidity
Roberto Onofrio. Chin. Phys. B, 2012, 21(7): 070306.
[13] Generation of broadly tunable picosecond mid-infrared laser and sensitive detection of a mid-infrared signal by parametric frequency up-conversion in MgO:LiNbO3 optical parametric amplifiers
Zhang Qiu-Lin,Zhang Jing,Qiu Kang-Sheng,Zhang Dong-Xiang,Feng Bao-Hua,Zhang Jing-Yuan. Chin. Phys. B, 2012, 21(5): 054213.
[14] Generation of squeezed TEMM01 modes with periodically poled KTiOPO4 crystal
Yang Rong-Guo, Sun Heng-Xin, Zhang Jun-Xiang, Gao Jiang-Rui. Chin. Phys. B, 2011, 20(6): 060305.
[15] Einstein–Podolsky–Rosen entanglement in time-dependent broadband pumping frequency non-degenerate optical parametric amplifier
Zhao Chao-Ying, Tan Wei-Han. Chin. Phys. B, 2011, 20(1): 010305.
No Suggested Reading articles found!