Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(6): 060302    DOI: 10.1088/1674-1056/20/6/060302
GENERAL Prev   Next  

Atomic N00N state generation in distant cavities by virtual excitations

Li Ganga, Li Jiea, Zhang Tian-Caia, Yang Rong-Canb
a State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China; b State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China;School of Physics and Opto-Electronics Technology, Fujian Normal University, Fuzhou 350007, China
Abstract  A general scheme of generating N00N states of virtually-excited 2N atoms is proposed. The two cavities are fibre-connected with N atoms in each cavity. Although we focus on the case of N=2, the system can be extended to a few atoms with N>2. It is found that all 2N atoms can be entangled in the form of N00N states if the atoms in the first cavity are initially in the excited states and atoms in the second cavity are all in the ground states. The feasibility of the scheme is carefully discussed, it shows that the N00N state with a few atoms can be generated with good fidelity and the scheme is feasible in experiment.
Keywords:  optical cavity      optical fibre      virtual excitations      N00N states  
Received:  26 October 2010      Revised:  06 January 2011      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Project supported in part by the National Natural Science Foundation of China (Grant Nos. 10974125 and 60821004), the State Basic Key Research Program of China (Grant No. 2006CB921102), and the Science Foundation of the Educational Committee of Fujian Province, China (Grant No. JA09041).

Cite this article: 

Yang Rong-Can, Li Gang, Li Jie, Zhang Tian-Cai Atomic N00N state generation in distant cavities by virtual excitations 2011 Chin. Phys. B 20 060302

[1] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[2] Liu J, Wang Q, Kuang L M and Zeng H S 2010 Chin. Phys. B 19 030313
[3] Dür W, Cirac J I and Tarrach R 1999 Phys. Rev. Lett. 83 3562
[4] Ashfaq H K, Rameez-ul-Islam and Farhan S 2010 Chin. Phys. B 19 040309
[5] Zheng S B 2006 Phys. Rev. A 74 054303
[6] Fang M F and Kang G D 2008 Chin. Phys. B 17 3729
[7] Briegel H J and Raussendorf R 2001 Phys. Rev. Lett. 86 910
[8] Yang R C, Li H C, Lin X and Huang Z P 2007 Chin. Phys. 16 2219
[9] Bollinger J J, Itano W M, Wineland D J and Heinzen D J 1996 Phys. Rev. A 54 R4649
[10] Lee H, Kok P, Cerf N J and Dowling J P 2002 Phys. Rev. A 65 030101(R)
[11] Mitchell M W, Lundeen J S and Steinberg A M 2004 Nature 429 161
[12] Jones J A, Karlen S D, Fitzsimons J, Ardavan A, Benjamin S C, Briggs G A D and Morton J J L 2009 Science 324 1166
[13] Witelli C, Spagnolo N, Sciarrino F and De Martini F 2009 J. Opt. Soc. Am. B 26 892
[14] Gerry C C and Campos R A 2001 Phys. Rev. A 64 063814
[15] Walther P, Pan J W, Aspelmeyer M, Ursin R, Gasparoni S and Zeilinger A 2004 Nature 429 158
[16] Sun F W, Ou Z Y and Guo G C 2006 Phys. Rev. A 73 023808
[17] Kapale K T and Dowling J P 2007 Phys. Rev. Lett. 99 053602
[18] Dángelo M, Garuccio A and Tamma V 2008 Phys. Rev. A 77 063826
[19] Chen Y A, Bao X H, Yuan Z S, Chen S, Zhao B and Pan J W 2010 Phys. Rev. Lett. 104 043601
[20] Bose S, Knight P L, Plenio M B and Vedral V 1999 Phys. Rev. Lett. 83 5158
[21] Yang R C, Li H C, Chen M X and Lin X 2006 Chin. Phys. 15 2315
[22] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
[23] Osnaghi S, Bertet P, Auffeves A, Maioli P, Raimond J M and Haroche S 2001 Phys. Rev. Lett. 87 037902
[24] Blinov B B, Moehring D L, Duan L M and Monroe C 2004 Nature 428 153
[25] Parkins A S and Kimble H J 2000 Phys. Rev. A 61 052104
[26] Mermin N D 1990 Phys. Rev. Lett. 65 1838
[27] Lin G W, Zou X B, Lin X M and Guo G C 2009 Phys. Rev. A 79 042332
[28] Serafini A, Mancini S and Bose S 2006 Phys. Rev. Lett. 96 010503
[29] Yin Z Q and Li F L 2007 Phys. Rev. A 75 012324
[30] Yang Z B, Wu H Z, Su W J and Zheng S B 2009 Phys. Rev. A 80 012305
[31] Nohama F K and Roversi J A 2008 J. Phys. B: At. Mol. Opt. Phys. 41 045503
[32] Chen L B, Ye M Y, Lin G W, Du Q H and Lin X M 2007 Phys. Rev. A 76 062304
[33] Zhou Y L, Wang Y M, Liang M and Li C Z 2009 Phys. Rev. A 79 044304
[34] Yang Z B, Ye S Y, Serafini A and Zheng S B J. Phys. B: At. Mol. Opt. Phys. 43 085506
[35] Zheng S B 2009 Appl. Phys. Lett. 94 154101
[36] Wilk T, Ga"etan A, Evellin C, Wolters J, Miroshnychenko Y, Grangier P and Browaeys A 2010 Phys. Rev. Lett. 104 010502
[37] Zheng S B 2010 Chin. Phys. B 19 064204
[38] James D F V 2000 Fortschr. Phys. 48 823
[39] Zheng S B 2005 Phys. Rev. A 71 062335
[40] Aguiar Pinto A C and Thomaz M T 2003 J. Phys. A: Math. Gen. 36 7461
[41] Lin G W, Zou X B, Lin X M and Guo G C 2009 Appl. Phys. Lett. 95 224102
[42] Hartmann M J, Brand ao F G S L and Plenio M B 2006 Nature Phys. 2 849
[1] Dissipative quantum phase transition in a biased Tavis-Cummings model
Zhen Chen(陈臻), Yueyin Qiu(邱岳寅), Guo-Qiang Zhang(张国强), Jian-Qiang You(游建强). Chin. Phys. B, 2020, 29(4): 044201.
[2] Improvement on the magneto-optical Kerr effect of cobalt film with a quadrilayer structure
Zhang Shao-Yin, Tang Shao-Long, Gao Jin-Long, Luo Xiao-Jing, Xia Wen-Bin, Du You-Wei. Chin. Phys. B, 2013, 22(8): 087802.
[3] Electromagnetically induced transparency of single Λ-type three-level atom in high-finesse optical cavity
Sun Yan-Fen, Tan Lei, Xu Yan. Chin. Phys. B, 2013, 22(3): 030309.
[4] Demonstration of the approximation of eliminating atomic excited populations in an atom–cavity system
Zhang Yu-Qing,Huang Gang,Tan Lei. Chin. Phys. B, 2012, 21(2): 023701.
[5] High-speed chaotic communication using an optical fibre ring as a key
Zou Lin, Feng Ye, Yang Yi-Biao, Wang An-Bang, Yang Ling-Zhen, Zhang Jian-Zhong. Chin. Phys. B, 2011, 20(9): 094209.
[6] Photoluminescence of an Yb3+/Al3+-codoped microstructured optical fibre
Xia Chang-Ming, Zhou Gui-Yao, Han Ying, Hou Lan-Tian. Chin. Phys. B, 2011, 20(8): 087802.
[7] Generation of Wn state with three atoms trapped in two remote cavities coupled by an optical fibre
Li Yan-Ling, Fang Mao-Fa. Chin. Phys. B, 2011, 20(5): 050314.
[8] Quantum logic operations on two distant atoms trapped in two optical-fibre-connected cavities
Zhang Ying-Qiao, Zhang Shou, Yeon Kyu-Hwang, Yu Seong-Cho. Chin. Phys. B, 2011, 20(12): 120310.
[9] Acoustic longitudinal mode coupling in w-shaped Al/Ge Co-doped fibre
Li Hong-Liang, Zhang Wei, Huang Yi-Dong, Peng Jiang-De. Chin. Phys. B, 2011, 20(10): 104211.
[10] Mechanical effects of light on the Ξ-type three-level atom in a high-finesse optical cavity
Liu Li-Wei, Tan Lei, Huang Gang. Chin. Phys. B, 2011, 20(1): 014205.
[11] Stimulated supercontinuum-radiation generation of carbon disulfide by all-trans-β-carotene fluorescence enhancement effect in liquid core optical fibre
Men Zhi-Wei, Fang Wen-Hui, Li Zuo-Wei, Qu Guan-Nan, Gao Shu-Qin, Lu Guo-Hui, Yang Jian-Ge, Sun Cheng-Lin. Chin. Phys. B, 2010, 19(8): 084206.
[12] A polarization stabilizer up to 12.6 krad/s with an additional function of stable state of polarization transformation
Zhang Xiao-Guang, Fang Guang-Qing, Zhao Xin-Yuan, Zhang Wen-Bo, Xi Li-Xia, Xiong Qian-Jin, Li Xi-Xiang, Zhang Guang-Yong. Chin. Phys. B, 2010, 19(4): 044211.
[13] Comprehensive research on self phase modulation based optical delay systems
Yang Ai-Ying, Sun Yu-Nan. Chin. Phys. B, 2010, 19(11): 114205.
[14] Generation of multi-atom W states via Raman transitionin an optical cavity
Wu Chun-Wang, Han Yang, Deng Zhi-Jiao, Liang Lin-Mei, Li Cheng-Zu. Chin. Phys. B, 2010, 19(1): 010313.
[15] Robust generation of high-fidelity entangled states for multiple atoms
Lin Li-Hua. Chin. Phys. B, 2009, 18(2): 588-592.
No Suggested Reading articles found!