Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(1): 010208    DOI: 10.1088/1674-1056/20/1/010208
GENERAL Prev   Next  

Disturbed solution of the El Niño-southern oscillation sea–air delayed oscillator

Xie Feng(谢峰)a)d),Lin Wan-Tao(林万涛)b),Lin Yi-Hua(林一骅)b),and Mo Jia-Qi(莫嘉琪)c)d)
a College of Science, Donghua University, Shanghai 201620, China; b Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; c Department of Mathematics, Anhui Normal University, Wuhu 241003, Chinad Division of Computational Science, E-Institutes of Shanghai Universities at SJTU, Shanghai 200240, China
Abstract  A class of delayed oscillators of El Niño-southern oscillation (ENSO) models is considered. Using the delayed theory, the perturbed theory and other methods, the asymptotic expansions of the solutions for ENSO models are obtained and the asymptotic behaviour of solution of corresponding problem is studied.
Keywords:  nonlinear      perturbation theory      EI Niño-southern oscillation model  
Received:  06 June 2010      Revised:  31 July 2010      Accepted manuscript online: 
PACS:  02.30.Mv (Approximations and expansions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 40876010 and 10701023), the Main Direction Program of the Knowledge Innovation Project of Chinese Academy of Sciences (Grant No. KZCX2-YW-Q03-08), the Research and Development Special Fund for Public Welfare Industry (Meteorology) (Grant No. GYHY200806010), the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamic State Key Laboratory Special Fund, the Foundation of E-Institutes of Shanghai Municipal Education Commission (Grant No. E03004), the Fundamental Research Funds for the Central Universities (Grant No. 2010B08-2-1), and the Natural Science Foundation of Zhejiang Province. China (Grant No. Y6090164).

Cite this article: 

Xie Feng(谢峰), Lin Wan-Tao(林万涛), Lin Yi-Hua(林一骅), and Mo Jia-Qi(莫嘉琪) Disturbed solution of the El Niño-southern oscillation sea–air delayed oscillator 2011 Chin. Phys. B 20 010208

[1] Bjerknes J A 1996 wxTellus.18 820
[2] Schopf P S and Suarez M J 1988 wxJ. Atmos. Sci.45 549
[3] Philander S G, Lau N C and Pacanowski R C 1989 wxPhilos. Trans. Roy. Soc. London rm Ser A329 167
[4] Latif M, Sterl A and Maier-Reimer E 1993 wxJ. Climate6 700
[5] Neelin J D 1990 wxJ. Atmos. Sci.47 674
[6] Neelin J D, Latif M and Jin F F 1994 wxAnnu. Rev. Fluid Mech.26 617
[7] McWilliams J C and Gent P R 1991 wxJ. Atmos. Sci.35 962
[8] Gill A E 1985 wxElsevier Oceanography Series40 303
[9] Wakata Y and Sarachik E S 1991 wxJ. Atmos. Sci.48 2060
[10] Jin F F and Neelin J D 1993 wxJ. Atmos. Sci.50 3523
[11] Jin F F, Neelin J D and Ghil M 1994 wxScience264 70
[12] Wang C, Weisberg R H and Virmani J I 1999 wxJ. Geophys. Res.104 5131
[13] Wang B and Wang Y 1996 wxJ. Climate9 1586
[14] Wang B and Fang Z 1996 wxJ. Atmos. Sci.53 2786
[15] Wang B, Barcilon A and Fang Z 1999 wxJ. Atmos. Sci.56 5
[16] Wang C 2001 wxAdvances in Atmospheric Sciences18 674
[17] Feng G L, Dai X G, Wang A H and Chou J F 2001 wxActa Phys. Sin50 606 (in Chinese)
[18] Feng G L, Dong W J, Jia X J and Cao H X 2002 wxActa Phys. Sin.51 1181 (in Chinese)
[19] Liu S K, Fu Z T, Liu S D and Zhao Q 2002 wxActa Phys. Sin.51 10 (in Chinese)
[20] de Jager E M and Jiang F 1996 The Theory of Singular Perturbation (Amsterdam: North-Holland Publishing Co.)
[21] Sagon G 2008 wxNonlinearity21 1183
[22] Hovhannisyan G and Vulanovic 2008 wxNonlinear Stud.15 297
[23] Barbu L and Cosma I 2009 wxJ. Math. Anal. Appl.351 392
[24] Ramos M E 2009 wxJ. Math. Anal. Appl.352 246
[25] Lin W T and Mo J Q 2003 wxChinese Science Bulletin48 5
[26] Xie F, Lin W T, Lin Y H and Mo J Q 2011 wxActa Phys. Sin.60 (in press)
[27] Mo J Q and Chen X F 2010 wxActa Phys. Sin.59 1403 (in Chinese)
[28] Mo J Q and Lin W T 2004 wxActa Phys. Sin.53 996 (in Chinese)
[29] Mo J Q and Lin W T 2005 wxChin. Phys.14 875
[30] Mo J Q and Lin W T 2008 wxChin. Phys. B17 370
[31] Mo J Q and Lin W T 2008 wxChin. Phys. B17 743
[32] Mo J Q, Lin W T and Wang H 2009 wxActa Math. Sin.29 101
[33] Mo J Q, Lin W T and Lin Y H 2009 wxChin. Phys. B18 3624
[34] Mo J Q, Lin Y H and Lin W T 2010 wxChin. Phys. B19 030202
[35] Mo J Q 2010 wxChin. Phys. B19 010203
[36] Wang C 2001 wxAdvances in Atmospheric Sciences18 674
[37] O'Malley R E 1974 Introdction to Singular Perturbation (New York: Academic Press)
[1] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[2] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[3] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[4] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[5] Deep-learning-based cryptanalysis of two types of nonlinear optical cryptosystems
Xiao-Gang Wang(汪小刚) and Hao-Yu Wei(魏浩宇). Chin. Phys. B, 2022, 31(9): 094202.
[6] Numerical investigation of the nonlinear spectral broadening aiming at a few-cycle regime for 10 ps level Nd-doped lasers
Xi-Hang Yang(杨西杭), Fen-Xiang Wu(吴分翔), Yi Xu(许毅), Jia-Bing Hu(胡家兵), Pei-Le Bai(白培乐), Hai-Dong Chen(陈海东), Xun Chen(陈洵), and Yu-Xin Leng(冷雨欣). Chin. Phys. B, 2022, 31(9): 094206.
[7] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[8] Influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system
Yun-Chen Zhu(朱云晨), Ping-Xue Li(李平雪), Chuan-Fei Yao(姚传飞), Chun-Yong Li(李春勇),Wen-Hao Xiong(熊文豪), and Shun Li(李舜). Chin. Phys. B, 2022, 31(6): 064201.
[9] Collision enhanced hyper-damping in nonlinear elastic metamaterial
Miao Yu(于淼), Xin Fang(方鑫), Dianlong Yu(郁殿龙), Jihong Wen(温激鸿), and Li Cheng(成利). Chin. Phys. B, 2022, 31(6): 064303.
[10] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[11] Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas
Hui Li(李慧), Jiquan Li(李继全), Zhengxiong Wang(王正汹), Lai Wei(魏来), and Zhaoqing Hu(胡朝清). Chin. Phys. B, 2022, 31(6): 065207.
[12] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[13] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[14] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[15] Scanning the optical characteristics of lead-free cesium titanium bromide double perovskite nanocrystals
Chenxi Yu(于晨曦), Long Gao(高龙), Wentong Li(李文彤), Qian Wang(王倩), Meng Wang(王萌), and Jiaqi Zhang(张佳旗). Chin. Phys. B, 2022, 31(5): 054218.
No Suggested Reading articles found!