Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(1): 010208    DOI: 10.1088/1674-1056/20/1/010208
GENERAL Prev   Next  

Disturbed solution of the El Niño-southern oscillation sea–air delayed oscillator

Xie Fenga, Mo Jia-Qib, Lin Wan-Taoc, Lin Yi-Huac
a College of Science, Donghua University, Shanghai 201620, China;Division of Computational Science, E-Institutes of Shanghai Universities at SJTU, Shanghai 200240, China; b Department of Mathematics, Anhui Normal University, Wuhu 241003, China;Division of Computational Science, E-Institutes of Shanghai Universities at SJTU, Shanghai 200240, China; c Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Abstract  A class of delayed oscillators of El Niño-southern oscillation (ENSO) models is considered. Using the delayed theory, the perturbed theory and other methods, the asymptotic expansions of the solutions for ENSO models are obtained and the asymptotic behaviour of solution of corresponding problem is studied.
Keywords:  nonlinear      perturbation theory      EI Niño-southern oscillation model  
Received:  06 June 2010      Revised:  31 July 2010      Published:  15 January 2011
PACS:  02.30.Mv (Approximations and expansions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 40876010 and 10701023), the Main Direction Program of the Knowledge Innovation Project of Chinese Academy of Sciences (Grant No. KZCX2-YW-Q03-08), the Research and Development Special Fund for Public Welfare Industry (Meteorology) (Grant No. GYHY200806010), the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamic State Key Laboratory Special Fund, the Foundation of E-Institutes of Shanghai Municipal Education Commission (Grant No. E03004), the Fundamental Research Funds for the Central Universities (Grant No. 2010B08-2-1), and the Natural Science Foundation of Zhejiang Province. China (Grant No. Y6090164).

Cite this article: 

Xie Feng, Lin Wan-Tao, Lin Yi-Hua, Mo Jia-Qi Disturbed solution of the El Niño-southern oscillation sea–air delayed oscillator 2011 Chin. Phys. B 20 010208

[1] Bjerknes J A 1996 wxTellus.18 820
[2] Schopf P S and Suarez M J 1988 wxJ. Atmos. Sci.45 549
[3] Philander S G, Lau N C and Pacanowski R C 1989 wxPhilos. Trans. Roy. Soc. London rm Ser A329 167
[4] Latif M, Sterl A and Maier-Reimer E 1993 wxJ. Climate6 700
[5] Neelin J D 1990 wxJ. Atmos. Sci.47 674
[6] Neelin J D, Latif M and Jin F F 1994 wxAnnu. Rev. Fluid Mech.26 617
[7] McWilliams J C and Gent P R 1991 wxJ. Atmos. Sci.35 962
[8] Gill A E 1985 wxElsevier Oceanography Series40 303
[9] Wakata Y and Sarachik E S 1991 wxJ. Atmos. Sci.48 2060
[10] Jin F F and Neelin J D 1993 wxJ. Atmos. Sci.50 3523
[11] Jin F F, Neelin J D and Ghil M 1994 wxScience264 70
[12] Wang C, Weisberg R H and Virmani J I 1999 wxJ. Geophys. Res.104 5131
[13] Wang B and Wang Y 1996 wxJ. Climate9 1586
[14] Wang B and Fang Z 1996 wxJ. Atmos. Sci.53 2786
[15] Wang B, Barcilon A and Fang Z 1999 wxJ. Atmos. Sci.56 5
[16] Wang C 2001 wxAdvances in Atmospheric Sciences18 674
[17] Feng G L, Dai X G, Wang A H and Chou J F 2001 wxActa Phys. Sin50 606 (in Chinese)
[18] Feng G L, Dong W J, Jia X J and Cao H X 2002 wxActa Phys. Sin.51 1181 (in Chinese)
[19] Liu S K, Fu Z T, Liu S D and Zhao Q 2002 wxActa Phys. Sin.51 10 (in Chinese)
[20] de Jager E M and Jiang F 1996 The Theory of Singular Perturbation (Amsterdam: North-Holland Publishing Co.)
[21] Sagon G 2008 wxNonlinearity21 1183
[22] Hovhannisyan G and Vulanovic 2008 wxNonlinear Stud.15 297
[23] Barbu L and Cosma I 2009 wxJ. Math. Anal. Appl.351 392
[24] Ramos M E 2009 wxJ. Math. Anal. Appl.352 246
[25] Lin W T and Mo J Q 2003 wxChinese Science Bulletin48 5
[26] Xie F, Lin W T, Lin Y H and Mo J Q 2011 wxActa Phys. Sin.60 (in press)
[27] Mo J Q and Chen X F 2010 wxActa Phys. Sin.59 1403 (in Chinese)
[28] Mo J Q and Lin W T 2004 wxActa Phys. Sin.53 996 (in Chinese)
[29] Mo J Q and Lin W T 2005 wxChin. Phys.14 875
[30] Mo J Q and Lin W T 2008 wxChin. Phys. B17 370
[31] Mo J Q and Lin W T 2008 wxChin. Phys. B17 743
[32] Mo J Q, Lin W T and Wang H 2009 wxActa Math. Sin.29 101
[33] Mo J Q, Lin W T and Lin Y H 2009 wxChin. Phys. B18 3624
[34] Mo J Q, Lin Y H and Lin W T 2010 wxChin. Phys. B19 030202
[35] Mo J Q 2010 wxChin. Phys. B19 010203
[36] Wang C 2001 wxAdvances in Atmospheric Sciences18 674
[37] O'Malley R E 1974 Introdction to Singular Perturbation (New York: Academic Press)
[1] Soliton interactions and asymptotic state analysis in a discrete nonlocal nonlinear self-dual network equation of reverse-space type
Cui-Lian Yuan(袁翠连) and Xiao-Yong Wen(闻小永). Chin. Phys. B, 2021, 30(3): 030201.
[2] Breather solutions of modified Benjamin-Bona-Mahony equation
G T Adamashvili. Chin. Phys. B, 2021, 30(2): 020503.
[3] A local refinement purely meshless scheme for time fractional nonlinear Schrödinger equation in irregular geometry region
Tao Jiang(蒋涛), Rong-Rong Jiang(蒋戎戎), Jin-Jing Huang(黄金晶), Jiu Ding(丁玖), and Jin-Lian Ren(任金莲). Chin. Phys. B, 2021, 30(2): 020202.
[4] A concise review of Rydberg atom based quantum computation and quantum simulation
Xiaoling Wu(吴晓凌), Xinhui Liang(梁昕晖), Yaoqi Tian(田曜齐), Fan Yang(杨帆), Cheng Chen(陈丞), Yong-Chun Liu(刘永椿), Meng Khoon Tey(郑盟锟), and Li You(尤力). Chin. Phys. B, 2021, 30(2): 020305.
[5] Propagation properties and radiation force of circular Airy Gaussian vortex beams in strongly nonlocal nonlinear medium
Xinyu Liu(刘欣宇), Chao Sun(孙超), and Dongmei Deng(邓冬梅). Chin. Phys. B, 2021, 30(2): 024202.
[6] A meshless algorithm with the improved moving least square approximation for nonlinear improved Boussinesq equation
Yu Tan(谭渝) and Xiao-Lin Li(李小林). Chin. Phys. B, 2021, 30(1): 010201.
[7] Suppression of multi-pulse formation in all-polarization-maintaining figure-9 erbium-doped fiber mode-locked laser
Jun-Kai Shi(石俊凯), Deng-Feng Dong(董登峰), Ying-Ling Pan(潘映伶), Guan-Nan Li(李冠楠), Yao Li(黎尧), Li-Tuo Liu(刘立拓), Xiao-Mei Chen(陈晓梅), and Wei-Hu Zhou(周维虎). Chin. Phys. B, 2021, 30(1): 014206.
[8] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[9] Inversion method of bubble size distribution based on acoustic nonlinear coefficient measurement
Jie Shi(时洁), Yulin Liu(刘宇林), Shengguo Shi(时胜国), Anding Deng(邓安定), Hongdao Li(李洪道). Chin. Phys. B, 2020, 29(8): 084301.
[10] Measurement and verification of concentration-dependent diffusion coefficient: Ray tracing imagery of diffusion process
Li Wei(魏利), Wei-Dong Meng(孟伟东), Li-Cun Sun(孙丽存), Xin-Fei Cao(曹新飞), Xiao-Yun Pu(普小云). Chin. Phys. B, 2020, 29(8): 084206.
[11] Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures
Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁). Chin. Phys. B, 2020, 29(8): 087802.
[12] Pulse generation in Yb-doped polarization-maintaining fiber laser by nonlinear polarization evolution
Cheng-Bin Liang(梁成斌), Yan-Rong Song(宋晏蓉), Zi-Kai Dong(董自凯), Yun-Feng Wu(吴云峰), Jin-Rong Tian(田金荣), Run-Qin Xu(徐润亲). Chin. Phys. B, 2020, 29(7): 074206.
[13] Four-soliton solution and soliton interactions of the generalized coupled nonlinear Schrödinger equation
Li-Jun Song(宋丽军), Xiao-Ya Xu(徐晓雅), Yan Wang(王艳). Chin. Phys. B, 2020, 29(6): 064211.
[14] Effect of dark soliton on the spectral evolution of bright soliton in a silicon-on-insulator waveguide
Zhen Liu(刘振), Wei-Guo Jia(贾维国), Hong-Yu Wang(王红玉), Yang Wang(汪洋), Neimule Men-Ke(门克内木乐), Jun-Ping Zhang(张俊萍). Chin. Phys. B, 2020, 29(6): 064212.
[15] Solid angle car following model
Dongfang Ma(马东方), Yueyi Han(韩月一), Sheng Jin(金盛). Chin. Phys. B, 2020, 29(6): 060504.
No Suggested Reading articles found!