Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(7): 070204    DOI: 10.1088/1674-1056/19/7/070204
GENERAL Prev   Next  

A novel evolving scale-free model with tunable attractiveness

Liu Xuan (刘绚)a, Liu Tian-Qi (刘天琪)a, Wang Hao (王昊)b, Li Xing-Yuan (李兴源)a
a School of Electrical Engineering and Automation, Sichuan University, Chengdu 610000, China; b College of Electronics and Information Engineering, Sichuan University, Chengdu 610000, China
Abstract  In this paper, a new evolving model with tunable attractiveness is presented. Based on the Barabasi—Albert (BA) model, we introduce the attractiveness of node which can change with node degree. Using the mean-field theory, we obtain the analytical expression of power-law degree distribution with the exponent $\gamma \in (3,\infty)$. The new model is more homogeneous and has a lower clustering coefficient and bigger average path length than the BA model.
Keywords:  scale-free      tunable attractiveness      degree distribution      clustering coefficient  
Revised:  18 January 2010      Accepted manuscript online: 
PACS:  89.75.Hc (Networks and genealogical trees)  
  02.30.Jr (Partial differential equations)  
  02.50.Cw (Probability theory)  
Fund: Project supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2008BAA13B01).

Cite this article: 

Liu Xuan (刘绚), Liu Tian-Qi (刘天琪), Wang Hao (王昊), Li Xing-Yuan (李兴源) A novel evolving scale-free model with tunable attractiveness 2010 Chin. Phys. B 19 070204

[1] Kinney R, Crucitti P, Albert R and Latora V 2005 Europ. Phys. J. B 46 101
[2] Vázquez A, Pastor-Satorras R and Vespignani A 2002 Phys. Rev. E 65 066130
[3] Newman M E J 2001 Proc. Natl. Acad. Sci. USA 98 404
[4] Albert R, Jeong H and Barabási A L 1999 Nature 401 130
[5] Barabási A L and Albert R 1999 Science 286 509
[6] Newman M E J 2003 SIAM Rev. 45 167
[7] Bianconi G and Barabási A L 2001 Phys. Rev. Lett. 86 5632
[8] Ergün G and Rodgers G J 2002 Physica A 303 261
[9] Huang Z X, Wang X R and Zhu H 2004 Chin. Phys. 13 273
[10] Chen C 2007 Physica A 377 709
[11] Dorogovtsev S N, Mendes J F F and Samukhin A N 2000 Phys. Rev. Lett. 85 4633
[12] Vázquez A 2003 Phys. Rev. E 67 056104
[13] Simas T and Rocha L M 2008 Phys. Rev. E 78 066116
[14] Dorogovtsev S N and Mendes J F F 2000 Phys. Rev. E 62 1842
[15] Chen Fei, Chen Z Q and Yuan Z Z 2007 Chin. Phys. 16 287
[16] Shao Z G, Zou X W, Tan Z J and Jin Z Z 2006 J. Phys. A: Math. Gen 39 2035
[17] Albert R and Barabási A L 2002 Rev. Mod. Phys. bf74 47
[18] Dorogovtsev S N and Mendes J F F 2000 Phys. Rev. E 62 1842
[19] Tao S H, Yang C, Li H N and Zhang Y 2009 Computer Engineering 35 03
[20] Newman M E J, Moore C and Watts D J 2000 Phys. Rev. Lett. 84 3201
[1] Evolution of donations on scale-free networks during a COVID-19 breakout
Xian-Jia Wang(王先甲) and Lin-Lin Wang(王琳琳). Chin. Phys. B, 2022, 31(8): 080204.
[2] Robustness measurement of scale-free networks based on motif entropy
Yun-Yun Yang(杨云云), Biao Feng(冯彪), Liao Zhang(张辽), Shu-Hong Xue(薛舒红), Xin-Lin Xie(谢新林), and Jian-Rong Wang(王建荣). Chin. Phys. B, 2022, 31(8): 080201.
[3] Finite density scaling laws of condensation phase transition in zero-range processes on scale-free networks
Guifeng Su(苏桂锋), Xiaowen Li(李晓温), Xiaobing Zhang(张小兵), Yi Zhang(张一). Chin. Phys. B, 2020, 29(8): 088904.
[4] Study on the phase transition of the fractal scale-free networks
Qing-Kuan Meng(孟庆宽), Dong-Tai Feng(冯东太), Yu-Ping Sun(孙玉萍), Ai-Ping Zhou(周爱萍), Yan Sun(孙艳), Shu-Gang Tan(谭树刚), Xu-Tuan Gao(高绪团). Chin. Phys. B, 2018, 27(10): 106402.
[5] Multiple-predators-based capture process on complex networks
Rajput Ramiz Sharafat, Cunlai Pu(濮存来), Jie Li(李杰), Rongbin Chen(陈荣斌), Zhongqi Xu(许忠奇). Chin. Phys. B, 2017, 26(3): 038901.
[6] Time-varying networks based on activation and deactivation mechanisms
Xue-Wen Wang(王学文), Yue-E Luo(罗月娥), Li-Jie Zhang(张丽杰), Xin-Jian Xu(许新建). Chin. Phys. B, 2017, 26(10): 108902.
[7] Degree distribution of random birth-and-death network with network size decline
Xiao-Jun Zhang(张晓军), Hui-Lan Yang(杨会兰). Chin. Phys. B, 2016, 25(6): 060202.
[8] Stability of weighted spectral distribution in a pseudo tree-like network model
Bo Jiao(焦波), Yuan-ping Nie(聂原平), Cheng-dong Huang(黄赪东), Jing Du(杜静), Rong-hua Guo(郭荣华), Fei Huang(黄飞), Jian-mai Shi(石建迈). Chin. Phys. B, 2016, 25(5): 058901.
[9] Global forward-predicting dynamic routing for traffic concurrency space stereo multi-layer scale-free network
Xie Wei-Hao (解维浩), Zhou Bin (周斌), Liu En-Xiao (刘恩晓), Lu Wei-Dang (卢为党), Zhou Ting (周婷). Chin. Phys. B, 2015, 24(9): 098903.
[10] Degree distribution and robustness of cooperativecommunication network with scale-free model
Wang Jian-Rong (王建荣), Wang Jian-Ping (王建萍), He Zhen (何振), Xu Hai-Tao (许海涛). Chin. Phys. B, 2015, 24(6): 060101.
[11] Cascading failure in the wireless sensor scale-free networks
Liu Hao-Ran (刘浩然), Dong Ming-Ru (董明如), Yin Rong-Rong (尹荣荣), Han Li (韩丽). Chin. Phys. B, 2015, 24(5): 050506.
[12] Effects of channel noise on synchronization transitions in delayed scale-free network of stochastic Hodgkin-Huxley neurons
Wang Bao-Ying (王宝英), Gong Yu-Bing (龚玉兵). Chin. Phys. B, 2015, 24(11): 118702.
[13] Co-evolution of the brand effect and competitiveness in evolving networks
Guo Jin-Li (郭进利). Chin. Phys. B, 2014, 23(7): 070206.
[14] Evolution of IPv6 Internet topology with unusual sudden changes
Ai Jun (艾均), Zhao Hai (赵海), Kathleen M. Carleyb, Su Zhan (苏湛), Li Hui (李辉). Chin. Phys. B, 2013, 22(7): 078902.
[15] Effects of node buffer and capacity on network traffic
Ling Xiang (凌翔), Hu Mao-Bin (胡茂彬), Ding Jian-Xun (丁建勋). Chin. Phys. B, 2012, 21(9): 098902.
No Suggested Reading articles found!