Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 113102    DOI: 10.1088/1674-1056/19/11/113102
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Accurate calculations of the helium atom in magnetic fields

Zhao Ji-Jun, Wang Xiao-Feng, Qiao Hao-Xue
Department of Physics, Wuhan University, Wuhan 430072, China
Abstract  The 110+, 11(-1)+and 11(-2)+ states of the helium atom in the magnetic field regime between 0 and 100 a.u. are studied using a full configuration-interaction (CI) approach. The total energies, derivatives of the total energy with respect to the magnetic field and ionisation energies are calculated with Hylleraas-like functions in spherical coordinates in low to intermediate fields and Hylleraas–Gaussian functions in cylindrical coordinates in intermediate to high fields, respectively. In intermediate fields, the total energies and ionisation energies are determined in terms of Hermite interpolation, based on the results obtained with the two above-mentioned basis functions. Calculations show that the current method can produce lower total energies and larger ionisation energies, and make the two ionisation energy curves obtained with the two above-mentioned basis functions join smoothly in intermediate fields. Comparisons are also made with previous works.
Keywords:  strong magnetic field      helium atom      total energy      ionisation energy     
Received:  09 June 2010      Published:  15 November 2010
PACS:  31.15.-p (Calculations and mathematical techniques in atomic and molecular physics)  
  31.15.ve (Electron correlation calculations for atoms and ions: ground state)  
  31.15.vj (Electron correlation calculations for atoms and ions: excited states)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10874133).

Cite this article: 

Zhao Ji-Jun, Wang Xiao-Feng, Qiao Hao-Xue Accurate calculations of the helium atom in magnetic fields 2010 Chin. Phys. B 19 113102

[1] Ostriker J P and Hartwick F D A 1968 Astrophys. J. 153 797
[2] Kemp J C, Swedlund J B, Landstreet J D and Angel J R P 1970 Astrophys. J. 161 L77
[3] Trumper J, Pietsch W, Reppin C, Voges W, Staubert R and Kendziorra E 1978 Astrophys. J. 219 L105
[4] Elliott R J and Loudon R 1960 J. Phys. Chem. Solids 15 196
[5] Wan Y, Ortiz G and Phillips P 1995 Phys. Rev. Lett. 75 2879
[6] Rosner W, Wunner G, Herold H and Ruder H 1984 J. Phys. B: At. Mol. Phys. 17 29
[7] Ruder H, Wunner G, Herold H and Geyer F 1994 Atoms in Strong Magnetic Fields (Berlin: Springer)
[8] Kravchenko Y P, Liberman M A and Johansson B 1996 Phys. Rev. A 54 287
[9] Kravchenko Y P, Liberman M A and Johansson B 1996 Phys. Rev. Lett. 77 619
[10] Thurner G, Korbel H, Braun M, Herold H, Ruder H and Wunner G 1993 J. Phys. B: At. Mol. Opt. Phys. 26 4719
[11] Jones M D, Ortiz G and Ceperley D M 1996 Phys. Rev. A 54 219
[12] Scrinzi A 1998 Phys. Rev. A 58 3879
[13] Hesse M and Baye D 2004 J. Phys. B: At. Mol. Opt. Phys. 37 3937
[14] Becken W, Schmelcher P and Diakonos F K 1999 J. Phys. B: At. Mol. Opt. Phys. 32 1557
[15] Becken W and Schmelcher P 2000 J. Phys. B: At. Mol. Opt. Phys. 33 545
[16] Becken W and Schmelcher P 2001 Phys. Rev. A 63 053412
[17] Jordan S, Schmelcher P, Becken W and Schweizer W 1998 Astron. Astrophys. 336 L33
[18] Jordan S, Schmelcher P and Becken W 2001 Astron. Astrophys. 376 614
[19] Wang X F and Qiao H X 2008 Phys. Rev. A 77 043414
[20] Wang X F, Zhao J J and Qiao H X 2009 Phys. Rev. A 80 053425
[21] Kono A and Hattori S 1984 Phys. Rev. A 29 2981
[22] cSakirovglu S, Dovgan "U, Yhi ldhi z A, Akg"ung"or K, Epik H, Erg"un Y, Sarhi H and S"okmen .I 2009 Chin. Phys. B 18 1578
[23] cSakirovglu S, Akg"ung"or K and S"okmen .I 2009 Chin. Phys. B 18 2238
[24] Persson B J and Taylor P R 1996 J. Chem. Phys. 105 5915
[25] Drake G W F, Cassar M M and Nistor R A 2002 Phys. Rev. A 65 054501
[26] Drake G W F and Yan Z C 1992 Phys. Rev. A 46 2378
[27] Jones M D, Ortiz G and Ceperley D M 1999 Phys. Rev. A 59 2875 endfootnotesize
[1] Laser-assisted XUV double ionization of helium atoms: Intensity dependence of joint angular distributions
Fengzheng Zhu(朱风筝), Genliang Li(黎根亮), Aihua Liu(刘爱华). Chin. Phys. B, 2020, 29(7): 073202.
[2] Charge transfer of He2+ with H in a strong magnetic field
Liu Chun-Lei, Zou Shi-Yang, He Bin, Wang Jian-Guo. Chin. Phys. B, 2015, 24(9): 093402.
[3] High accuracy calculation of the hydrogen negative ion in strong magnetic fields
Zhao Ji-Jun, Wang Xiao-Feng, Qiao Hao-Xue. Chin. Phys. B, 2011, 20(5): 053101.
[4] Effect of superstrong magnetic field on electron screening at the crusts of neutron stars
Liu Jing-Jing. Chin. Phys. B, 2010, 19(9): 099601.
[5] Effect of strong magnetic field on chemical potential and electron capture in magnetar
Gao Jie, Luo Zhi-Quan, Liu Wei-Wei, Li Gang. Chin. Phys. B, 2010, 19(9): 099701.
[6] Statistic properties of Fermi gas in a strong magnetic field
Men Fu-Dian, Fan Zhao-Lan. Chin. Phys. B, 2010, 19(3): 030502.
[7] Nuclear energy generation rates on magnetar surfaces
Luo Zhi-Quan, Liu Hong-Lin, Liu Jing-Jing, Lai Xiang-Jun. Chin. Phys. B, 2009, 18(1): 377-381.
[8] Effect of strong magnetic field on electron capture of iron group nuclei in crusts of neutron stars
Liu Jing-Jing, Luo Zhi-Quan, Liu Hong-Lin, Lai Xiang-Jun. Chin. Phys. B, 2007, 16(9): 2671-2675.
[9] Influence of strong magnetic field on β decay in the crusts of neutron stars
Zhang Jie, Liu Men-Quan, Luo Zhi-Quan. Chin. Phys. B, 2006, 15(7): 1477-1480.
[10] An effective potential method for the calculation of hydrogen molecule ion energy in a strong magnetic field
Jiao Zhi-Yong, Li Yu-Cheng. Chin. Phys. B, 2002, 11(5): 467-471.
No Suggested Reading articles found!